6,324 research outputs found

    Nuclear density-functional theory and fission of super-heavy elements

    Full text link
    We review the prediction of fission properties of super-heavy elements (SHE) by self-consistent mean-field models thereby concentrating on the widely used Skyrme-Hartree-Fock (SHF) approach. We explain briefly the theoretical tools: the SHF model, the calibration of model parameters together with statistical analysis of uncertainties and correlations, and the involved computation of fission lifetimes. We present an overview of fission stability in comparison to other decay channels over the whole landscape of SHE reaching deep into the rr-process domain. The main emphasis lies on a detailed discussion of the various ingredients determining eventually the fission properties. The main result is that fission is an involved process which explores many different influences with almost equal share, basic bulk properties (also known as liquid-drop model parameters), pairing strengths, and shell effects. %Comment: 9 figures, 1 tabl

    The search for continuous gravitational waves: metric of the multi-detector F-statistic

    Get PDF
    We develop a general formalism for the parameter-space metric of the multi-detector F-statistic, which is a matched-filtering detection statistic for continuous gravitational waves. We find that there exists a whole family of F-statistic metrics, parametrized by the (unknown) amplitude parameters of the gravitational wave. The multi-detector metric is shown to be expressible in terms of noise-weighted averages of single-detector contributions, which implies that the number of templates required to cover the parameter space does not scale with the number of detectors. Contrary to using a longer observation time, combining detectors of similar sensitivity is therefore the computationally cheapest way to improve the sensitivity of coherent wide-parameter searches for continuous gravitational waves. We explicitly compute the F-statistic metric family for signals from isolated spinning neutron stars, and we numerically evaluate the quality of different metric approximations in a Monte-Carlo study. The metric predictions are tested against the measured mismatches and we identify regimes in which the local metric is no longer a good description of the parameter-space structure.Comment: 20 pages, 15 figures, revtex4; v2: some edits of style and notation, fixed minor typo

    Misfits in Skyrme-Hartree-Fock

    Full text link
    We address very briefly five critical points in the context of the Skyrme-Hartree-Fock (SHF) scheme: 1) the impossibility to consider it as an interaction, 2) a possible inconsistency of correlation corrections as, e.g., the center-of-mass correction, 3) problems to describe the giant dipole resonance (GDR) simultaneously in light and heavy nuclei, 4) deficiencies in the extrapolation of binding energies to super-heavy elements (SHE), and 5) a yet inappropriate trend in fission life-times when going to the heaviest SHE. While the first two points have more a formal bias, the other three points have practical implications and wait for solution.Comment: 9 pages, 4 figure

    Contact angles on heterogeneous surfaces; a new look at Cassie's and Wenzel's laws

    Full text link
    We consider a three dimensional liquid drop sitting on a rough and chemically heterogeneous substrate. Using a novel minimization technique on the free energy of this system, a generalized Young's equation for the contact angle is found. In certain limits, the Cassie and Wenzel laws, and a new equivalent rule, applicable in general, are derived. We also propose an equation in the same spirit as these results but valid on a more `microscopic' level. Throughout we work under the presence of gravity and keep account of line tension terms.Comment: 10 pages RevTeX, 2 EPS figures. A few minor corrections mad

    The two-proton shell gap in Sn isotopes

    Full text link
    We present an analysis of two-proton shell gaps in Sn isotopes. As the theoretical tool we use self-consistent mean-field models, namely the relativistic mean-field model and the Skyrme-Hartree-Fock approach, both with two different pairing forces, a delta interaction (DI) model and a density-dependent delta interaction (DDDI). We investigate the influence of nuclear deformation as well as collective correlations and find that both effects contribute significantly. Moreover, we find a further significant dependence on the pairing force used. The inclusion of deformation plus correlation effects and the use of DDDI pairing provides agreement with the data.Comment: gzipped tar archiv containing LaTeX source, bibliography file (*.bbl), all figures as *.eps, and the style file
    corecore