3,929 research outputs found

    Interplay of frequency-synchronization with noise: current resonances, giant diffusion and diffusion-crests

    Full text link
    We elucidate how the presence of noise may significantly interact with the synchronization mechanism of systems exhibiting frequency-locking. The response of these systems exhibits a rich variety of behaviors, such as resonances and anti-resonances which can be controlled by the intensity of noise. The transition between different locked regimes provokes the development of a multiple enhancement of the effective diffusion. This diffusion behavior is accompanied by a crest-like peak-splitting cascade when the distribution of the lockings is self-similar, as it occurs in periodic systems that are able to exhibit a Devil's staircase sequence of frequency-lockings.Comment: 7 pages, 6 figures, epl.cls. Accepted for publication in Europhysics Letter

    Exploiting lattice potentials for sorting chiral particles

    Full text link
    Several ways are demonstrated of how periodic potentials can be exploited for sorting molecules or other small objects which only differ by their chirality. With the help of a static bias force, the two chiral partners can be made to move along orthogonal directions. Time-periodic external forces even lead to motion into exactly opposite directions.Comment: 4 pages, 4 figure

    Semiclassical analysis of the lowest-order multipole deformations of simple metal clusters

    Full text link
    We use a perturbative semiclassical trace formula to calculate the three lowest-order multipole (quadrupole \eps_2, octupole \eps_3, and hexadecapole \eps_4) deformations of simple metal clusters with 90N55090 \le N \le 550 atoms in their ground states. The self-consistent mean field of the valence electrons is modeled by an axially deformed cavity and the oscillating part of the total energy is calculated semiclassically using the shortest periodic orbits. The average energy is obtained from a liquid-drop model adjusted to the empirical bulk and surface properties of the sodium metal. We obtain good qualitative agreement with the results of quantum-mechanical calculations using Strutinsky's shell-correction method.Comment: LaTeX file (v2) 6 figures, to be published in Phys. Lett.

    Rotating binary Bose-Einstein condensates and vortex clusters in quantum droplets

    Full text link
    Quantum droplets may form out of a gaseous Bose-Einstein condensate, stabilized by quantum fluctuations beyond mean field. We show that multiple singly-quantized vortices may form in these droplets at moderate angular momenta in two dimensions. Droplets carrying these precursors of an Abrikosov lattice remain self-bound for certain timescales after switching off an initial harmonic confinement. Furthermore, we examine how these vortex-carrying droplets can be formed in a more pertubation-resistant setting, by starting from a rotating binary Bose-Einstein condensate and inducing a metastable persistent current via a non-monotonic trapping potential.Comment: 5 page, 4 figure

    Facilitated movement of inertial Brownian motors driven by a load under an asymmetric potential

    Full text link
    Based on recent work [L. Machura, M. Kostur, P. Talkner, J. Luczka, and P. Hanggi, Phys. Rev. Lett. 98, 040601 (2007)], we extend the study of inertial Brownian motors to the case of an asymmetric potential. It is found that some transport phenomena appear in the presence of an asymmetric potential. Within tailored parameter regimes, there exists two optimal values of the load at which the mean velocity takes its maximum, which means that a load can facilitate the transport in the two parameter regimes. In addition, the phenomenon of multiple current reversals can be observed when the load is increased.Comment: 7 pages, 3 figure

    Nonequilibrium coupled Brownian phase oscillators

    Full text link
    A model of globally coupled phase oscillators under equilibrium (driven by Gaussian white noise) and nonequilibrium (driven by symmetric dichotomic fluctuations) is studied. For the equilibrium system, the mean-field state equation takes a simple form and the stability of its solution is examined in the full space of order parameters. For the nonequilbrium system, various asymptotic regimes are obtained in a closed analytical form. In a general case, the corresponding master equations are solved numerically. Moreover, the Monte-Carlo simulations of the coupled set of Langevin equations of motion is performed. The phase diagram of the nonequilibrium system is presented. For the long time limit, we have found four regimes. Three of them can be obtained from the mean-field theory. One of them, the oscillating regime, cannot be predicted by the mean-field method and has been detected in the Monte-Carlo numerical experiments.Comment: 9 pages 8 figure

    Resonant Activation Phenomenon for Non-Markovian Potential-Fluctuation Processes

    Full text link
    We consider a generalization of the model by Doering and Gadoua to non-Markovian potential-switching generated by arbitrary renewal processes. For the Markovian switching process, we extend the original results by Doering and Gadoua by giving a complete description of the absorption process. For all non-Markovian processes having the first moment of the waiting time distributions, we get qualitatively the same results as in the Markovian case. However, for distributions without the first moment, the mean first passage time curves do not exhibit the resonant activation minimum. We thus come to the conjecture that the generic mechanism of the resonant activation fails for fluctuating processes widely deviating from Markovian.Comment: RevTeX 4, 5 pages, 4 figures; considerably shortened version accepted as a brief report to Phys. Rev.

    ICT as learning media and research instrument: What eResearch can offer for those who research eLearning?

    Get PDF
    Students‘ interactions in digital learning environments are distributed over time and space, and many aspects of eLearning phenomenon cannot be investigated using traditional research approaches. At the same time, the possibility to collect digital data about students‘ online interactions and learning opens a range of new opportunities to use ICT as research tool and apply new research approaches. This symposium brings together some of the recent advancements in the area of ICT-enhanced research and aims to discuss future directions for methodological innovation in this area. The session will include four presentations that will explore different directions of ICT use for eLearning research

    Dynamical typicality for initial states with a preset measurement statistics of several commuting observables

    Full text link
    We consider all pure or mixed states of a quantum many-body system which exhibit the same, arbitrary but fixed measurement outcome statistics for several commuting observables. Taking those states as initial conditions, which are then propagated by the pertinent Schr\"odinger or von Neumann equation up to some later time point, and invoking a few additional, fairly weak and realistic assumptions, we show that most of them still entail very similar expectation values for any given observable. This so-called dynamical typicality property thus corroborates the widespread observation that a few macroscopic features are sufficient to ensure the reproducibility of experimental measurements despite many unknown and uncontrollable microscopic details of the system. We also discuss and exemplify the usefulness of our general analytical result as a powerful numerical tool
    corecore