15 research outputs found

    Present-day stress orientations and tectonic provinces of the NW Borneo collisional margin

    Get PDF
    Extent: 15p.Borehole failure observed on image and dipmeter logs from 55 petroleum wells across the NW Borneo collisional margin were used to determine maximum horizontal stress (σH) orientations; combined with seismic and outcrop data, they define seven tectonic provinces. The Baram Delta–Deepwater Fold-Thrust Belt exhibits three tectonic provinces: its inner shelf inverted province (σH is NW-SE, margin-normal), its outer shelf extension province (σH is NE-SW, margin-parallel), and its slope to basin floor compression province (σH is NW-SE, margin-normal). In the inverted province, σH reflects inversion of deltaic normal faults. The σH orientations in the extension and compression provinces reflect deltaic gravitational tectonics. The shale and minibasin provinces have been recognized in offshore Sabah. In the shale province, σH is N010°E, which aligns around the boundary of a massif of mobile shale. Currently, no data are available to determine σH in the minibasin province. In the Balingian province, σH is ESE-WNW, reflecting ESE absolute Sunda plate motions due to the absence of a thick detachment seen elsewhere in NW Borneo. The Central Luconia province demonstrates poorly constrained and variable σH orientations. These seven provinces result from the heterogeneous structural and stratigraphic development of the NW Borneo margin and formed due to complex collisional tectonics and the varied distribution and thicknesses of stratigraphic packages.Rosalind C. King, Mark R. P. Tingay, Richard R. Hillis, Christopher K. Morley, and James Clar

    Stone Age Yersinia pestis genomes shed light on the early evolution, diversity, and ecology of plague

    Get PDF
    The bacterial pathogenYersinia pestisgave rise to devastating outbreaks throughouthuman history, and ancient DNA evidence has shown it afflicted human populations asfar back as the Neolithic.Y. pestisgenomes recovered from the Eurasian Late Neolithic/Early Bronze Age (LNBA) period have uncovered key evolutionary steps that led to itsemergence from aYersinia pseudotuberculosis-like progenitor; however, the number ofreconstructed LNBA genomes are too few to explore its diversity during this criticalperiod of development. Here, we present 17Y. pestisgenomes dating to 5,000 to 2,500y BP from a wide geographic expanse across Eurasia. This increased dataset enabled usto explore correlations between temporal, geographical, and genetic distance. Ourresults suggest a nonflea-adapted and potentially extinct single lineage that persistedover millennia without significant parallel diversification, accompanied by rapid dis-persal across continents throughout this period, a trend not observed in other pathogensfor which ancient genomes are available. A stepwise pattern of gene loss provides fur-ther clues on its early evolution and potential adaptation. We also discover the presenceof theflea-adapted form ofY. pestisin Bronze Age Iberia, previously only identified inin the Caucasus and the Volga regions, suggesting a much wider geographic spread ofthis form ofY. pestis. Together, these data reveal the dynamic nature of plague’s forma-tive years in terms of its early evolution and ecology
    corecore