101 research outputs found

    Cadmium Sulfide Nanoparticles Decorated with Au Quantum Dots as Ultrasensitive Photoelectrochemical Sensor for Selective Detection of Copper(II) Ions

    Get PDF
    Anomalous ingestion of copper has significant adverse effects and shows acute toxicity in living organisms. Recently, photoelectrochemical (PEC) method has attracted much attention as a platform for a Cu<sup>2+</sup> ion sensor because of its high sensitivity, selectivity, low-cost, and accurate selection compared to other conventional methods. In this work, stepwise hydrothermal and <i>in situ</i> chemical approaches for synthesizing cadmium sulfide nanoparticles (CdS NPs) for decorating gold quantum dots (Au QDs) are presented, along with notable PEC performance. The amount of Au QDs loaded on the CdS NPs had a significant influence on the PEC performance. CdS NPs-Au QDs-2 with 1.0 mmol % Au QDs demonstrated an exceptional photocurrent density of 350.6 μA cm<sup>–2</sup>, which was 3.7-, 2.2-, and 2.0-fold higher than those of CdS NPs, CdS NPs-Au QDs-1 (0.75 mmol %), and CdS NPs-Au QDs-3 (1.25 mmol %), respectively. Femtosecond transient absorption dynamics of the ground state recovery showed a buildup time of 243 fs for Au and 268 fs for CdS, which were assigned to cooling of the photoexcited electrons. For CdS NPs-Au QDs, the transient spectrum was dominated by a signal from CdS with no contribution from Au. The fast buildup dynamic was absent in CdS-Au, indicating a rapid transfer of the photoexcited electrons from CdS to Au before cooling down. Unquestionably, the CdS NPs-Au QDs-2 photoelectrode response upon Cu<sup>2+</sup> detection showed the lowest limit of detection of 6.73 nM in a linear range of 0.5–120 nM. The selectivity of CdS NPs-Au QDs-2 toward Cu<sup>2+</sup> ions in lake and tap water was also studied, which suggested that CdS NPs-Au QDs-2 is promising as a photoactive material for PEC-based environmental monitoring and analysis

    Bioinspired Nanomaterials

    No full text
    Biological synthesis employing microorganisms, fungi or plants is an alternative method to produce nanoparticles in low-cost and eco-friendly ways. The book covers the synthesis of metal nanoparticles, metal oxide nanostructures and nanocomposite materials, as well as the stability and characterization of bioinspired nanomaterials. Applications include optical and electrochemical sensors, packaging, SERS and drug delivery processes.Используемые программы Adobe AcrobatБиологический синтез с использованием микроорганизмов, грибов или растений является альтернативным методом получения наночастиц недорогими и экологически чистыми способами. Книга посвящена синтезу наночастиц металлов, наноструктур из оксидов металлов и нанокомпозитных материалов, а также стабильности и характеристикам наноматериалов, вдохновленных биоинспирированием. Области применения включают оптические и электрохимические датчики, упаковку, SERS и процессы доставки лекарств

    Bioinspired Nanomaterials for Energy and Environmental Applications

    No full text
    В книге представлены последние достижения в области синтеза наноматериалов с биоинспирированием и их применения в таких областях, как фотокатализ, электрокатализ и фотоэлектрокатализатор, суперконденсаторы и солнечные элементы. Конкретные темы включают фотокаталитическую дезинфекцию, разложение токсичных химических веществ, преобразование энергии и накопление энергии.Используемые программы Adobe AcrobatThe book presents recent advances in the synthesis of bioinspired nanomaterials and their applications in areas such as photocatalysis, electrocatalysis and photoelectrocatalysis, supercapacitors and solar cells. Specific topics include photocatalytic disinfection, degradation of toxic chemicals, energy conversion and energy storage

    Multiple recycling of fuel in prototype fast breeder reactor

    Full text link

    Multiple recycling of fuel in prototype fast breeder reactor

    No full text
    corecore