9 research outputs found

    Irreversible Quantum Baker Map

    Get PDF
    We propose a generalization of the model of classical baker map on the torus, in which the images of two parts of the phase space do overlap. This transformation is irreversible and cannot be quantized by means of a unitary Floquet operator. A corresponding quantum system is constructed as a completely positive map acting in the space of density matrices. We investigate spectral properties of this super-operator and their link with the increase of the entropy of initially pure states.Comment: 4 pages, 3 figures include

    Quantum ergodicity for graphs related to interval maps

    Full text link
    We prove quantum ergodicity for a family of graphs that are obtained from ergodic one-dimensional maps of an interval using a procedure introduced by Pakonski et al (J. Phys. A, v. 34, 9303-9317 (2001)). As observables we take the L^2 functions on the interval. The proof is based on the periodic orbit expansion of a majorant of the quantum variance. Specifically, given a one-dimensional, Lebesgue-measure-preserving map of an interval, we consider an increasingly refined sequence of partitions of the interval. To this sequence we associate a sequence of graphs, whose directed edges correspond to elements of the partitions and on which the classical dynamics approximates the Perron-Frobenius operator corresponding to the map. We show that, except possibly for subsequences of density 0, the eigenstates of the quantum graphs equidistribute in the limit of large graphs. For a smaller class of observables we also show that the Egorov property, a correspondence between classical and quantum evolution in the semiclassical limit, holds for the quantum graphs in question.Comment: 20 pages, 1 figur

    Quantum Iterated Function Systems

    Full text link
    Iterated functions system (IFS) is defined by specifying a set of functions in a classical phase space, which act randomly on an initial point. In an analogous way, we define a quantum iterated functions system (QIFS), where functions act randomly with prescribed probabilities in the Hilbert space. In a more general setting a QIFS consists of completely positive maps acting in the space of density operators. We present exemplary classical IFSs, the invariant measure of which exhibits fractal structure, and study properties of the corresponding QIFSs and their invariant states.Comment: 12 pages, 1 figure include

    Entropic bounds on semiclassical measures for quantized one-dimensional maps

    Full text link
    Quantum ergodicity asserts that almost all infinite sequences of eigenstates of a quantized ergodic system are equidistributed in the phase space. On the other hand, there are might exist exceptional sequences which converge to different (non-Liouville) classical invariant measures. By the remarkable result of N. Anantharaman and S. Nonnenmacher math-ph/0610019, arXiv:0704.1564 (with H. Koch), for Anosov geodesic flows the metric entropy of any semiclassical measure must be bounded from below. The result seems to be optimal for uniformly expanding systems, but not in general case, where it might become even trivial if the curvature of the Riemannian manifold is strongly non-uniform. It has been conjectured by the same authors, that in fact, a stronger bound (valid in general case) should hold. In the present work we consider such entropic bounds using the model of quantized one-dimensional maps. For a certain class of non-uniformly expanding maps we prove Anantharaman-Nonnenmacher conjecture. Furthermore, for these maps we are able to construct some explicit sequences of eigenstates which saturate the bound. This demonstrates that the conjectured bound is actually optimal in that case.Comment: 38 pages, 4 figure

    Locality for quantum systems on graphs depends on the number field

    Full text link
    Adapting a definition of Aaronson and Ambainis [Theory Comput. 1 (2005), 47--79], we call a quantum dynamics on a digraph "saturated Z-local" if the nonzero transition amplitudes specifying the unitary evolution are in exact correspondence with the directed edges (including loops) of the digraph. This idea appears recurrently in a variety of contexts including angular momentum, quantum chaos, and combinatorial matrix theory. Complete characterization of the digraph properties that allow such a process to exist is a long-standing open question that can also be formulated in terms of minimum rank problems. We prove that saturated Z-local dynamics involving complex amplitudes occur on a proper superset of the digraphs that allow restriction to the real numbers or, even further, the rationals. Consequently, among these fields, complex numbers guarantee the largest possible choice of topologies supporting a discrete quantum evolution. A similar construction separates complex numbers from the skew field of quaternions. The result proposes a concrete ground for distinguishing between complex and quaternionic quantum mechanics.Comment: 9 page
    corecore