53 research outputs found

    Serpentinite with and without brucite: A reaction pathway analysis of a natural serpentinite in the Josephine ophiolite, California

    Get PDF
    A partially serpentinized peridotite from the Josephine ophiolite has been studied in detail in order to characterize the chemical processes of its serpentinization. The original rock was harzburgite, and its olivine and orthopyroxene are partially replaced by veins and patches of lizardite serpentine and magnetite; brucite and talc are completely absent from the serpentinite, regardless of whether the precursor mineral was olivine or pyroxene. Petrographic and mineral-chemical data suggest at least two phases of serpentinization. Incipient serpentinization produced lizardite and magnetite veinlets, from preferential dissolution of orthopyroxene, and/or infiltration of a silica-rich fluid. No talc or brucite was produced, which suggests this serpentinization happened in a chemically open system. Later serpentinization was from a fluid closer to Fe-Mg-Si chemical equilibrium with the harzburgite, which should in theory favor formation of a brucite-bearing serpentinite. Brucite is absent from late serpentine veins, but they have some porosity which could represent former brucite that was dissolved out or was reacted out after serpentinization. Isocon modeling suggests that Si, Fe, and K were added during serpentinization and that Ca was lost; i.e., the serpentinization was not isochemical (except for H2O). Results of petrographic observations, thermodynamic modeling, and mass balance calculations were used to constrain the reactions for global serpentinization of the studied sample. These reactions indicate that water with a concentration of H2 up to two times that of deep sea vent fluids may have been produced during the serpentinization of the Josephine peridotite, which could then have been a potential host for significant biomass

    Optimizing the removal of small fish passage barriers

    No full text
    Removing small artificial barriers that hinder upstream migrations of fish is a major problem in riparian habitat restoration. Because of budgetary limitations, it is necessary to prioritize barrier removal and repair decisions. These have usually been based on scoring and ranking procedures, which, although simple to use, can be very inefficient in terms of increasing the amount of accessible instream habitat. We develop a novel decision-making approach, based on integer programming techniques, which optimizes repair and removal decisions. Results show based on real datasets of barrier culverts located in Washington State that scoring and ranking is over 25% below the optimum on average and a full 100% below in the worst case, producing no net habitat gain whatsoever. This is compared to a dynamic programming method that was able to find optimal solutions in less than a second, even for problems with up to several hundred variables, and a heuristic method, which found solutions with less than a 1% average optimality gap in even less tim
    • …
    corecore