170 research outputs found
A nonadiabatic semi-classical method for dynamics of atoms in optical lattices
We develop a semi-classical method to simulate the motion of atoms in a
dissipative optical lattice. Our method treats the internal states of the atom
quantum mechanically, including all nonadiabatic couplings, while position and
momentum are treated as classical variables. We test our method in the
one-dimensional case. Excellent agreement with fully quantum mechanical
simulations is found. Our results are much more accurate than those of earlier
semi-classical methods based on the adiabatic approximation.Comment: 7 pages, 5 figures, submitted to European Physical Journal
Demonstration of a controllable three-dimensional Brownian motor in symmetric potentials
We demonstrate a Brownian motor, based on cold atoms in optical lattices,
where isotropic random fluctuations are rectified in order to induce controlled
atomic motion in arbitrary directions. In contrast to earlier demonstrations of
ratchet effects, our Brownian motor operates in potentials that are spatially
and temporally symmetric, but where spatiotemporal symmetry is broken by a
phase shift between the potentials and asymmetric transfer rates between them.
The Brownian motor is demonstrated in three dimensions and the noise-induced
drift is controllable in our system.Comment: 5 pages, 4 figure
Influence of the lattice topography on a three-dimensional, controllable Brownian motor
We study the influence of the lattice topography and the coupling between
motion in different directions, for a three-dimensional Brownian motor based on
cold atoms in a double optical lattice. Due to controllable relative spatial
phases between the lattices, our Brownian motor can induce drifts in arbitrary
directions. Since the lattices couple the different directions, the relation
between the phase shifts and the directionality of the induced drift is non
trivial. Here is therefore this relation investigated experimentally by
systematically varying the relative spatial phase in two dimensions, while
monitoring the vertically induced drift and the temperature. A relative spatial
phase range of 2pi x 2pi is covered. We show that a drift, controllable both in
speed and direction, can be achieved, by varying the phase both parallel and
perpendicular to the direction of the measured induced drift. The experimental
results are qualitatively reproduced by numerical simulations of a simplified,
classical model of the system
Sliding and abrasive wear behaviour of HVOF- and HVAF-sprayed Cr3C2-NiCr hardmetal coatings
This paper provides a comprehensive characterisation of HVOF- and HVAF-sprayed Cr3C2-25 wt.% NiCr hardmetal coatings. One commercial powder composition with two different particle size distributions was processed using five HVOF and HVAF thermal spray systems. All coatings contain less Cr3C2 than the feedstock powder, possibly due to the rebound of some Cr3C2-rich particles during high-velocity impact onto the substrate. Dry sand-rubber wheel abrasive wear testing causes both grooving and pull-out of splat fragments. Mass losses depend on inter- and intra-lamellar cohesion, being higher (≥70 mg after a wear distance of 5904 m) for the coatings deposited with the coarser feedstock powder or with one type of HVAF torch. Sliding wear at room temperature against alumina involves shallower abrasive grooving, small-scale delamination and carbide pull-outs, and it is controlled by intra-lamellar cohesion. The coatings obtained from the fine feedstock powder exhibit the lowest wear rates (≈5×10-6 mm3/(Nm)). At 400 °C, abrasive grooving dominates the sliding wear behaviour; wear rates increase by one order of magnitude but friction coefficients decrease from ≈0.7 to ≈0.5. The thermal expansion coefficient of the coatings (11.08×10-6 °C-1 in the 30-400 °C range) is sufficiently close to that of the steel substrate (14.23×10-6 °C-1) to avoid macro-cracking
Synthesis of Oligodeoxyribo‐ and Oligoribonucleotides According to the H‐Phosphonate Method
Oligonucleotides can be synthesized by condensing a protected nucleoside H‐phosphonate monoester with a second nucleoside in the presence of a coupling agent to produce a dinucleoside H‐phosphonate diester. This can then be converted to a dinucleoside phosphate or to a backbone‐modified analog such as a phosphorothioate or phosphoramidite. This unit discusses four alternative methods for synthesizing nucleoside H‐phosphonate monoesters. The methods are efficient and experimentally simple, and use readily available reagents. The unit describes the activation of the monoesters, as well as competing acylation and other potential side reactions.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143594/1/cpnc0304.pd
A Fermi Surface study of BaKBiO
We present all electron computations of the 3D Fermi surfaces (FS's) in
BaKBiO for a number of different compositions based on the
selfconsistent Korringa-Kohn-Rostoker coherent-potential-approximation
(KKR-CPA) approach for incorporating the effects of Ba/K substitution. By
assuming a simple cubic structure throughout the composition range, the
evolution of the nesting and other features of the FS of the underlying
pristine phase is correlated with the onset of various structural transitions
with K doping. A parameterized scheme for obtaining an accurate 3D map of the
FS in BaKBiO for an arbitrary doping level is developed. We
remark on the puzzling differences between the phase diagrams of
BaKBiO and BaPbBiO by comparing aspects
of their electronic structures and those of the end compounds BaBiO,
KBiO and BaPbO. Our theoretically predicted FS's in the cubic phase are
relevant for analyzing high-resolution Compton scattering and
positron-annihilation experiments sensitive to the electron momentum density,
and are thus amenable to substantial experimental verification.Comment: 12 pages, 7 figures, to appear in Phys. Rev.
Evidence That Lipopolisaccharide May Contribute to the Cytokine Storm and Cellular Activation in Patients with Visceral Leishmaniasis
Visceral leishmaniasis (VL) affects organs rich in lymphocytes, being characterized by intense Leishmania-induced T-cell depletion and reduction in other hematopoietic cells. In other infectious and non-infectious diseases in which the immune system is affected, such as HIV-AIDS and inflammatory bowel disease, damage to gut-associated lymphocyte tissues occurs, enabling luminal bacteria to enter into the circulation. Lipopolisaccharide (LPS) is a bacterial product that stimulates macrophages, leading to the production of pro-inflammatory cytokines and other soluble factors such as MIF, which in turn activate lymphocytes. Continuous and exaggerated stimulation causes exhaustion of the T-cell compartment, contributing to immunosuppression
Regulatory T Cells Suppress T Cell Activation at the Pathologic Site of Human Visceral Leishmaniasis
Suppression of T cell response is thought to be involved in the pathogenesis of visceral leishmaniasis (VL). Regulatory T cell (Treg) mediated immune-suppression is reported in animal models of Leishmania infection. However, their precise role among human patients still requires pathologic validation. The present study is aimed at understanding the frequency dynamics and function of Treg cells in the blood and bone marrow (BM) of VL patients. The study included 42 parasitologically confirmed patients, 17 healthy contact and 9 normal bone marrow specimens (NBM). We show i) the selective accumulation of Treg cells at one of the disease inflicted site(s), the BM, ii) their in vitro expansion in response to LD antigen and iii) persistence after successful chemotherapy. Results indicate that the Treg cells isolated from BM produces IL-10 and may inhibit T cell activation in IL-10 dependent manner. Moreover, we observed significantly higher levels of IL-10 among drug unresponsive patients, suggesting their critical role in suppression of immunity among VL patients. Our results suggest that IL-10 plays an important role in suppression of host immunity in human VL and possibly determines the efficacy of chemotherapy
- …