871 research outputs found

    In the bones of wings| [poems]

    Get PDF

    Isolated testing of highly maneuverable inlet con cepts

    Get PDF
    Ten percent scale models of a Mach 2.2 two dimensional inlet and a Mach 2.0 axisymmetric inlet were tested in the NASA Lewis Research Center 8'x6' Supersonic Wind Tunnel as part of a cooperative effort with the McDonnell Aircraft Company. The objective of this effort was to test methods designed to increase the maneuvering performance of fighter aircraft inlets. Maneuvering improvement concepts were tested up to 40-deg angle of attack for Mach numbers of 0.6 and 0.9, and up to 25 deg for Mach numbers 1.2 and 1.4. Maneuvering improvement concepts included a rotating cowl lip, auxiliary inlets aft of the inlet throat, and a retracting centerbody for the axisymmetric inlet. Test results show that the rotating cowl design was effective in improving subsonic maneuvering performance for both inlets. Auxiliary inlets did not produce significant performance increases for either model. The retracted centerbody resulted in some performance benefits at high angles of attack. None of the maneuvering improvement concepts were effective at Mach 1.2 and 1.4

    Economics analysis of mitigation strategies for FMD introduction in highly concentrated animal feeding regions

    Get PDF
    Outbreaks of infectious animal diseases can lead to substantial losses as evidenced by 2003 US BSE (Bovine Spongiform Encephalopathy) event with consequent loss of export markets, and the 2001 UK FMD (Foot and Mouth Disease) outbreak that has cost estimates in the billions. In this paper we present a linked epidemiologic-economic modeling framework which is used to investigate several FMD mitigation strategies under the context of an FMD outbreak in a concentrated cattle feeding region in the US. In this study we extend the literature by investigating the economic effectiveness of some previously unaddressed strategies including early detection, enhanced vaccine availability, and enhanced surveillance under various combinations of slaughter, surveillance, and vaccination. We also consider different disease introduction points at a large feedlot, a backgrounder feedlot, a large grazing herd, and a backyard herd all in the Texas High Plains. In terms of disease mitigation strategies we evaluate the economic effectiveness of: 1. Speeding up initial detection by one week from day 14 to day 7 after initial infection; 2. Speeding up vaccine availability from one week post disease detection to the day of disease detection; 3.Doubling post event surveillance intensity. To examine the economic implications of these strategies we use a two component stochastic framework. The first component is the epidemiologic model that simulates the spread of FMD as affected by control policies and introduction scenarios. The second component is an economics module, which calculates an estimate of cattle industry losses plus the costs of implementing disease control. The results show that early detection of the disease is the most effective mechanism for minimizing the costs of outbreak. Under some circumstances enhanced surveillance also proved to be an effective strategy.Livestock Production/Industries,

    Management factors associated with seropositivity to Lawsonia intracellularis in US swine herds.

    Get PDF
    abstract: This study was conducted to determine risk factors for Lawsonia intracellularis seropositivity in the breeding and grower-finisher units of US farrowing-to-finishing swine herds. Serum was collected from 15 breeding females and 15 grower-finisher pigs per herd in 184 farrow-to-finish herds, a subset of 405 herds in the National Animal Health Monitoring System (NAHMS) Swine 1995 Study that examined management, health and productivity in herds with at least 300 finisher pigs. Sera were tested by indirect fluorescent antibody test for L. intracellularis. Test results were linked with NAHMS questionnaire data and a logistic regression model of management factors associated with L. intracellularis serological status was developed. Separate models were used for breeding and grower-finisher units. Risk factors for seropositive breeding units were L intracellularis-seropositive status of the grower-finisher unit, use of a continuous system of management for the farrowing unit and a young parity structure (<75% multiparous sows). Risk factors for seropositive grower-finisher units were L. intracellularis-seropositive status of the breeding unit, the number of pigs entering the grower-finisher stage, raising pigs on concrete slats, and intensive management compared with raising pigs on outdoor lots. Use of all in-all out management in the farrowing house and an older parity structure in the sow herd were associated with a lower risk of L. intracellularis seropositivity in the breeding unit, and slatted concrete flooring in grower-finisher houses was associated with a greater risk. Alteration of these management factors might improve control of L. intracellularis infection in farrowing-to-finishing herds

    Dynamic Inlet Distortion Prediction with a Combined Computational Fluid Dynamics and Distortion Synthesis Approach

    Get PDF
    A procedure has been developed for predicting peak dynamic inlet distortion. This procedure combines Computational Fluid Dynamics (CFD) and distortion synthesis analysis to obtain a prediction of peak dynamic distortion intensity and the associated instantaneous total pressure pattern. A prediction of the steady state total pressure pattern at the Aerodynamic Interface Plane is first obtained using an appropriate CFD flow solver. A corresponding inlet turbulence pattern is obtained from the CFD solution via a correlation linking root mean square (RMS) inlet turbulence to a formulation of several CFD parameters representative of flow turbulence intensity. This correlation was derived using flight data obtained from the NASA High Alpha Research Vehicle flight test program and several CFD solutions at conditions matching the flight test data. A distortion synthesis analysis is then performed on the predicted steady state total pressure and RMS turbulence patterns to yield a predicted value of dynamic distortion intensity and the associated instantaneous total pressure pattern

    The impact of seasonal variability in wildlife populations on the predicted spread of foot and mouth disease

    Get PDF
    Modeling potential disease spread in wildlife populations is important for predicting, responding to and recovering from a foreign animal disease incursion such as foot and mouth disease (FMD). We conducted a series of simulation experiments to determine how seasonal estimates of the spatial distribution of white-tailed deer impact the predicted magnitude and distribution of potential FMD outbreaks. Outbreaks were simulated in a study area comprising two distinct ecoregions in South Texas, USA, using a susceptible-latent-infectious-resistant geographic automata model (Sirca). Seasonal deer distributions were estimated by spatial autoregressive lag models and the normalized difference vegetation index. Significant (P < 0.0001) differences in both the median predicted number of deer infected and number of herds infected were found both between seasons and between ecoregions. Larger outbreaks occurred in winter within the higher deer-density ecoregion, whereas larger outbreaks occurred in summer and fall within the lower deer-density ecoregion. Results of this simulation study suggest that the outcome of an FMD incursion in a population of wildlife would depend on the density of the population infected and when during the year the incursion occurs. It is likely that such effects would be seen for FMD incursions in other regions and countries, and for other diseases, in cases in which a potential wildlife reservoir exists. Study findings indicate that the design of a mitigation strategy needs to take into account population and seasonal characteristics

    What Happens When the "Magic" Wears Off?

    Get PDF
    The issues raised when public planners become involved in the private development process are illustrated clearly through a careful reading of Elizabeth Tornquist's analysis of the Durham Center's development. As city planners, we are involved daily with private developers — reviewing site plans, considering zoning changes, proposing utility extensions or street improvements. We even subsidize private developers if they are building or rehabilitating houses. Only recently have planning departments anywhere in the United States become involved in assisting industrial and commercial developers in any substantial way; most of the relationships between planners and economic developers to date have been regulatory or even adversarial

    Lithium Phthalocyanine: A Probe for Electron Paramagnetic Resonance Oximetry in Viable Biological Systems.

    Get PDF
    Lithium phthalocyanine (LiPc) is a prototype of another generation of synthetic, metallic-organic, paramagnetic crystallites that appear very useful for in vitro and in vivo electron paramagnetic resonance oximetry. The peak-to-peak line width of the electron paramagnetic resonance spectrum of LiPc is a linear function of the partial pressure of oxygen (pO2); this linear relation is independent of the medium surrounding the LiPc. It has an extremely exchange-narrowed spectrum (peak-to-peak line width = 14 mG in the absence of O2). Physicochemically LiPc is very stable; its response to pO2 does not change with conditions and environments (e.g., pH, temperature, redox conditions) likely to occur in viable biological systems. These characteristics provide the sensitivity, accuracy, and range to measure physiologically and pathologically pertinent O2 tensions (0.1-50 mmHg; 1 mmHg = 133 Pa). The application of LiPc in biological systems is demonstrated in measurements of pO2 in vivo in the heart, brain, and kidney of rats
    • 

    corecore