10 research outputs found

    PV Powered High Voltage Pulse Converter with Switching Cells for Food Processing Application

    No full text
    In recent years, industries in the suburb have retrofitted their power supply units with solar power supply systems. Using solar power supply systems for various applications, such as food processing, enables energy expense saving. A promising opportunity in the food industry is solar-powered Pulsed Electric Field (PEF) used in the treatment of fruits and their by-products. For this application, a converter is proposed in this paper with a combination of a passive switched inductor cell and a switched capacitor cell. Furthermore, the derived topology possesses an extendable feature. This topology generates high voltage repetitive pulses with a single semiconductor switch and a reduced component count. Dynamic study of the converter is also performed with the derivation of the transfer function. Cost effective, reliable, and simple circuitry are the critical features of this topology. The circuit topology can generate high voltage pulses by increasing the number of switched inductors and switched capacitor cells. A correlation study on the impact of the switched inductor/capacitor cell is also performed and analyzed, which is not usually performed. A 50 W prototype is designed and tested to validate the performance of the converte

    Extendable high gain low current/high pulse modified quadratic–SEPIC converter for water treatment applications

    No full text
    Abstract Substantial attention has been drawn over the past few years by high step-up dc-dc converters owing to their applications in a wide range. Apart from renewable energy applications, high voltage/ high pulse converters are efficiently used in water treatment applications. The converter suggested a combination of Quadratic and SEPIC converters with a diode-capacitor cell. This topology generates high-voltage repetitive pulses with a single semiconductor switch and reduced component count. The stress across the components is less than the high-gain converters reported in the literature. The topology has an extendable feature by increasing the number of diode-capacitor cells without affecting the stress. The superiority of the high pulse generating topology is validated with a similar converter in the literature. This paper discusses the nL5 simulator results for the proposed rated topology required for water treatment. A scaled-down 50 W prototype is tested for various input voltages to generate high voltage pulse, and the analytical study is validated
    corecore