9,741 research outputs found

    Observations on TeV gamma rays from Geminga and PSR 0950+08

    Get PDF
    The Geminga (2 CG 195+04) which exhibits a periodicity with a period of 59 to 60 s in its emission of X-rays, GeV gamma rays and TeV gamma rays was studied. During the winter of 1984 to 1985, this object was observed to see if it emits TeV gamma rays with a periodicity approx 60 s. The observations were carried out at two different sites separated by 11 Km with the Ooty Atmospheric Cerenkov Array split into two parts. Data were collected during clear moonless nights for a total duration of 15.3 hours spread over 2 months. Since the first time derivative of period is believed to be large and uncertain. The total data are subdivided into segments of duration not more than 3 days each to steer clear of the effects of P in the phase analysis. If TeV gamma ray signals are seen in each of these segments, it is possible to derive P from observed data

    Equipartition of Current in Parallel Conductors on Cooling Through the Superconducting Transition

    Full text link
    Our experiments show that for two or more pieces of a wire, of different lengths in general, combined in parallel and connected to a dc source, the current ratio evolves towards unity as the combination is cooled to the superconducting transition temperature Tc, and remains pinned at that value below it. This re-distribution of the total current towards equipartition without external fine tuning is a surprise. It can be physically understood in terms of a mechanism that involves the flux-flow resistance associated with the transport current in a wire of type-II superconducting material. It is the fact that the flux-flow resistance increases with current that drives the current division towards equipartition.Comment: Revised version of J.Phys. Condens.Matter; vol. 18(2006) L143-L147 14 pages including 3 figures; provided an explanation in terms of the physical mechanism of flux flow induced resistance that is proportional to the impressed current. We are adding a simple, physically robust derivation of our equipartition without taking resort to the minimum dissipation principl

    A CLEAN-based Method for Deconvolving Interstellar Pulse Broadening from Radio Pulses

    Get PDF
    Multipath propagation in the interstellar medium distorts radio pulses, an effect predominant for distant pulsars observed at low frequencies. Typically, broadened pulses are analyzed to determine the amount of propagation-induced pulse broadening, but with little interest in determining the undistorted pulse shapes. In this paper we develop and apply a method that recovers both the intrinsic pulse shape and the pulse broadening function that describes the scattering of an impulse. The method resembles the CLEAN algorithm used in synthesis imaging applications, although we search for the best pulse broadening function, and perform a true deconvolution to recover intrinsic pulse structre. As figures of merit to optimize the deconvolution, we use the positivity and symmetry of the deconvolved result along with the mean square residual and the number of points below a given threshold. Our method makes no prior assumptions about the intrinsic pulse shape and can be used for a range of scattering functions for the interstellar medium. It can therefore be applied to a wider variety of measured pulse shapes and degrees of scattering than the previous approaches. We apply the technique to both simulated data and data from Arecibo observations.Comment: 9 pages, 6 figures, Accepted for publication in the Astrophysical Journa

    A Proposal to Localize Fermi GBM GRBs Through Coordinated Scanning of the GBM Error Circle via Optical Telescopes

    Get PDF
    We investigate the feasibility of implementing a system that will coordinate ground-based optical telescopes to cover the Fermi GBM Error Circle (EC). The aim of the system is to localize GBM detected GRBs and facilitate multi-wavelength follow-up from space and ground. This system will optimize the observing locations in the GBM EC based on individual telescope location, Field of View (FoV) and sensitivity. The proposed system will coordinate GBM EC scanning by professional as well as amateur astronomers around the world. The results of a Monte Carlo simulation to investigate the feasibility of the project are presented.Comment: 2011 Fermi Symposium proceedings - eConf C11050
    corecore