research

Equipartition of Current in Parallel Conductors on Cooling Through the Superconducting Transition

Abstract

Our experiments show that for two or more pieces of a wire, of different lengths in general, combined in parallel and connected to a dc source, the current ratio evolves towards unity as the combination is cooled to the superconducting transition temperature Tc, and remains pinned at that value below it. This re-distribution of the total current towards equipartition without external fine tuning is a surprise. It can be physically understood in terms of a mechanism that involves the flux-flow resistance associated with the transport current in a wire of type-II superconducting material. It is the fact that the flux-flow resistance increases with current that drives the current division towards equipartition.Comment: Revised version of J.Phys. Condens.Matter; vol. 18(2006) L143-L147 14 pages including 3 figures; provided an explanation in terms of the physical mechanism of flux flow induced resistance that is proportional to the impressed current. We are adding a simple, physically robust derivation of our equipartition without taking resort to the minimum dissipation principl

    Similar works

    Full text

    thumbnail-image

    Available Versions