107 research outputs found
Dispersion-theoretical analysis of the nucleon electromagnetic formfactors
Dispersion relations allow for a coherent description of the nucleon electromagnetic form factors measured over a large range of momentum transfer, Q^2 \simeq 0 \ldots 35 GeV^2. Including constraints from unitarity and perturbative QCD, we present a novel parametrisation of the absorptive parts of the various isoscalar and isovector nucleon form factors. Using the current world data, we obtain results for the electromagnetic form factors, nucleon radii and meson couplings. We stress the importance of measurements at large momentum transfer to test the predictions of perturbative QCD
The couplings derived from QCD sum rules
The light cone QCD sum rules are derived for vector and tensor
couplings simultaneously. The vacuum gluon field contribution is taken into
account. Our results are .Comment: To appear in Phys. Rev. C (Brief Report
reaction near threshold
We analyze the total cross section data for near threshold
measured recently at SATURNE. Using an effective range approximation for the
on-shell S-wave final state interaction we extract from these data the
modulus fm of the threshold transition amplitude
. We present a calculation of various (tree-level) meson exchange
diagrams contributing to . It is essential that -emission from
the anomalous -vertex interferes destructively with
-emission from the proton lines. The contribution of scalar
-meson exchange to turns out to be negligibly small. Without
introducing off-shell meson-nucleon form factors the experimental value
fm can be reproduced with an -coupling constant
of . The results of the present approach agree qualitatively
with the J\"ulich model. We also perform a combined analysis of the reactions
and near threshold.Comment: Latex-file 6 pages, 2 Figure
Capture rate and neutron helicity asymmetry for ordinary muon capture on hydrogen
Applying heavy-baryon chiral perturbation theory to ordinary muon capture
(OMC) on a proton, we calculate the capture rate and neutron helicity asymmetry
up to next-to-next-to-leading order. For the singlet hyperfine state, we obtain
the capture rate Gamma_0 = 695 sec^{-1} while, for the triplet hyperfine state,
we obtain the capture rate Gamma_1 = 11.9 sec^{-1} and the neutron asymmetry
alpha_1 = 0.93. If the existing formalism is used to relate these atomic
capture rates to Gamma_{liq}, the OMC rate in liquid hydrogen, then Gamma_{liq}
corresponding to our improved values of Gamma_0 and Gamma_1 is found to be
significantly larger than the experimental value, primarily due to the updated
larger value of g_A. We argue that this apparent difficulity may be correlated
to the specious anomaly recently reported for mu^- + p to n + nu_mu + gamma,
and we suggest a possibility to remove these two "problems" simply and
simultaneously by reexamining the molecular physics input that underlies the
conventional analysis of Gamma_{liq}.Comment: 14 pages, 1 figur
Effect of recent R_p and R_n measurements on extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors
The Gari-Krumpelmann (GK) models of nucleon electromagnetic form factors, in
which the rho, omega, and phi vector meson pole contributions evolve at high
momentum transfer to conform to the predictions of perturbative QCD (pQCD), was
recently extended to include the width of the rho meson by substituting the
result of dispersion relations for the pole and the addition of rho' (1450)
isovector vector meson pole. This extended model was shown to produce a good
overall fit to all the available nucleon electromagnetic form factor (emff)
data. Since then new polarization data shows that the electric to magnetic
ratios R_p and R_n obtained are not consistent with the older G_{Ep} and G_{En}
data in their range of momentum transfer. The model is further extended to
include the omega' (1419) isoscalar vector meson pole. It is found that while
this GKex cannot simultaneously fit the new R_p and the old G_{En} data, it can
fit the new R_p and R_n well simultaneously. An excellent fit to all the
remaining data is obtained when the inconsistent G_{Ep} and G_{En} is omitted.
The model predictions are shown up to momentum transfer squared, Q^2, of 8
GeV^2/c^2.Comment: 14 pages, 8 figures, using RevTeX4; email correspondence to
[email protected] ; minor typos corrected, figures added, conclusions
extende
Charmless Three-Body Baryonic B Decays
Motivated by recent data on B-> p pbar K decay, we study various charmless
three-body baryonic B decay modes, including Lambda pbar pi, Sigma0 pbar pi, p
pbar pi, p pbar Kbar0, in a factorization approach. These modes have rates of
order 10^{-6}. There are two mechanisms for the baryon pair production,
current-produced and transition. The behavior of decay spectra from these
baryon production mechanisms can be understood by using QCD counting rules.
Predictions on rates and decay spectra can be checked in the near future.Comment: 26 pages, 9 figures; version to appear in Phys. Rev.
Spectral functions of isoscalar scalar and isovector electromagnetic form factors of the nucleon at two-loop order
We calculate the imaginary parts of the isoscalar scalar and isovector
electromagnetic form factors of the nucleon up to two-loop order in chiral
perturbation theory. Particular attention is paid on the correct behavior of Im
and Im at the two-pion threshold
in connection with the non-relativistic 1/M-expansion. We recover the
well-known strong enhancement near threshold originating from the nearby
anomalous singularity at . In the
case of the scalar spectral function Im one finds a significant
improvement in comparison to the lowest order one-loop result. Higher order
-rescattering effects are however still necessary to close a remaining
20%-gap to the empirical scalar spectral function. The isovector electric and
magnetic spectral functions Im get additionally enhanced near
threshold by the two-pion-loop contributions. After supplementing their
two-loop results by a phenomenological -meson exchange term one can
reproduce the empirical isovector electric and magnetic spectral functions
fairly well.Comment: 10 pages, 6 figures, submitted to Physical Review
Isospin breaking in the vector current of the nucleon
Extraction of the nucleon's strange form factors from experimental data
requires a quantitative understanding of the unavoidable contamination from
isospin violation. A number of authors have addressed this issue during the
past decade, and their work is reviewed here. The predictions from early models
are largely consistent with recent results that rely as much as possible on
input from QCD symmetries and related experimental data. The resulting bounds
on isospin violation are sufficiently precise to be of value to on-going
experimental and theoretical studies of the nucleon's strange form factors.Comment: 5 pages, 3 figures. Presented at the International Workshop "From
Parity Violation to Hadronic Structure and more...", Milos, Greece, 16-20 May
2006. Version 2 is only to update Refs. [21] and [25
The size of the proton - closing in on the radius puzzle
We analyze the recent electron-proton scattering data from Mainz using a
dispersive framework that respects the constraints from analyticity and
unitarity on the nucleon structure. We also perform a continued fraction
analysis of these data. We find a small electric proton charge radius, r_E^p =
0.84_{-0.01}^{+0.01} fm, consistent with the recent determination from muonic
hydrogen measurements and earlier dispersive analyses. We also extract the
proton magnetic radius, r_M^p = 0.86_{-0.03}^{+0.02} fm, consistent with
earlier determinations based on dispersion relations.Comment: 4 pages, 2 figures, fit improved, small modifications, section on
continued fractions modified, conclusions on the proton charge radius
unchanged, version accepted for publication in European Physical Journal
Spin-Dependent Twist-Four Matrix Elements from g_1 Data in the Resonance Region
Matrix elements of spin-dependent twist-four operators are extracted from
recent data on the spin-dependent g_1 structure function of the proton and
deuteron in the resonance region. We emphasize the need to include the elastic
contributions to the first moments of the structure functions at Q^2 < 2 GeV^2.
The coefficients of the 1/Q^2 corrections to the Ellis-Jaffe sum rules are
found to be 0.04 \pm 0.02 and 0.03 \pm 0.04 GeV^2 for the proton and neutron,
respectively.Comment: 10 pages REVTeX, 4 figure
- …
