1,291 research outputs found

    Connexins and pannexins: from biology towards clinical targets.

    Get PDF
    Efficient cell communication is a prerequisite for the coordinated function of tissues and organs. In vertebrates, this communication is mediated by a variety of mechanisms, including the exchange of molecules between cells, and between cells and the extracellular medium, via membrane channels made of connexin and pannexin proteins. These channels are a necessary component of all human tissues. Here, we review the biological essentials of the connexin and pannexin families, and the roles of these proteins in the function of cells which are central to major human diseases. We then discuss how connexins and pannexins participate in human pathology, and the clinical perspectives that this knowledge opens

    Toward third order ghost imaging with thermal light

    Full text link
    Recently it has been suggested that an enhancement in the visibility of ghost images obtained with thermal light can be achieved exploiting higher order correlations [3]. This paper reports on the status of an higher order ghost imaging experiment carried on at INRIM labs exploiting a pseudo-thermal source and a CCD camera.Comment: To be published in Proceedings of Recent advances in Foundations of Quantum Mechanics and Quantum Informatio

    Beta cells preferentially exchange cationic molecules via connexin 36 gap junction channels

    Get PDF
    Aims/hypothesis: Pancreatic beta cells are connected by gap junction channels made of connexin 36 (Cx36), which permit intercellular exchanges of current-carrying ions (ionic coupling) and other molecules (metabolic coupling). Previous studies have suggested that ionic coupling may extend to larger regions of pancreatic islets than metabolic coupling. The aim of the present study was to investigate whether this apparent discrepancy reflects a difference in the sensitivity of the techniques used to evaluate beta cell communication or a specific characteristic of the Cx36 channels themselves. Methods: We microinjected several gap junction tracers, differing in size and charge, into individual insulin-producing cells and evaluated their intercellular exchange either within intact islets of control, knockout and transgenic mice featuring beta cells with various levels of Cx36, or in cultures of wild-type and Cx36-transfected MIN6 cells. Results: We found that (1) Cx36 channels favour the exchange of cations and larger positively charged molecules between beta cells at the expense of anionic molecules; (2) this exchange occurs across sizable portions of pancreatic islets; and (3) during glibenclamide (known as glyburide in the USA and Canada) stimulation beta cell coupling increases to an extent that varies for different gap junction-permeant molecules. Conclusions/interpretation: The data show that beta cells are extensively coupled within pancreatic islets via exchanges of mostly positively charged molecules across Cx36 channels. These exchanges selectively increase during stimulation of insulin secretion. The identification of this permselectivity is expected to facilitate the identification of endogenous permeant molecules and of the mechanism whereby Cx36 signalling significantly contributes to the modulation of insulin secretio

    Revealing interference by continuous variable discordant states

    Full text link
    In general, a pair of uncorrelated Gaussian states mixed in a beam splitter produces a correlated state at the output. However, when the inputs are identical Gaussian states the output state is equal to the input, and no correlations appear, as the interference had not taken place. On the other hand, since physical phenomena do have observable effects, and the beam splitter is there, a question arises on how to reveal the interference between the two beams. We prove theoretically and demonstrate experimentally that this is possible if at least one of the two beams is prepared in a discordant, i.e. Gaussian correlated, state with a third beam. We also apply the same technique to reveal the erasure of polarization information. Our experiments involves thermal states and the results show that Gaussian discordant states, even when they show a positive Glauber P-function, may be useful to achieve specific tasks.Comment: published versio
    corecore