64 research outputs found

    Adaptive Effects on Locomotion Performance Following Exposure to a Rotating Virtual Environment

    Get PDF
    During long-duration spaceflight, astronauts experience alterations in vestibular and somatosensory cues that result in adaptive disturbances in balance and coordination upon return to Earth. These changes can pose a risk to crew safety and to mission objectives if nominal or emergency vehicle egress is required immediately following long-duration spaceflight. At present, no operational countermeasure is available to mitigate the adaptive sensorimotor component underlying the locomotor disturbances that occur after spaceflight. Therefore, the goal of this study is to develop an inflight training regimen that facilitates recovery of locomotor function after long-duration spaceflight. The countermeasure we are proposing is based on the concept of adaptive generalization. During this type of training the subject gains experience producing the appropriate adaptive motor behavior under a variety of sensory conditions and response constraints. As a result of this training a subject learns to solve a class of motor problems, rather than a specific motor solution to one problem, i.e., the subject learns response generalizability or the ability to "learn to learn." under a variety of environmental constraints. We are developing an inflight countermeasure built around treadmill exercise activities. By manipulating the sensory conditions of exercise by varying visual flow patterns, body load and speed we will systematically and repeatedly promote adaptive change in locomotor behavior. It has been shown that variable practice training increases adaptability to novel visuo-motor situations. While walking over ground in a stereoscopic virtual environment that oscillated in roll, subjects have shown compensatory torso rotation in the direction of scene rotation that resulted in positional variation away from a desired linear path. Thus, postural sway and locomotor stability in 1-g can be modulated by visual flow patterns and used during inflight treadmill training to promote adaptive generalization. The purpose of this study was to determine if adaptive modification in locomotor performance could be achieved by viewing simulated self-motion in a passive-immersive virtual ' environment over a prolonged period during treadmill locomotion

    Exposure to a Rotating Virtual Environment During Treadmill Locomotion Causes Adaptation in Heading Direction

    Get PDF
    The goal of the present study was to investigate the adaptive effects of variation in the direction of optic flow, experienced during linear treadmill walking, on modifying locomotor trajectory. Subjects (n = 30) walked on a motorized linear treadmill at 4.0 kilometers per hour for 24 minutes while viewing the interior of a 3D virtual scene projected onto a screen 1.5 in in front of them. The virtual scene depicted constant self-motion equivalent to either 1) walking around the perimeter of a room to one s left (Rotating Room group) 2) walking down the center of a hallway (Infinite Hallway group). The scene was static for the first 4 minutes, and then constant rate self-motion was simulated for the remaining 20 minutes. Before and after the treadmill locomotion adaptation period, subjects performed five stepping trials where in each trial they marched in place to the beat of a metronome at 90 steps/min while blindfolded in a quiet room. The subject's final heading direction (deg), final X (for-aft, cm) and final Y (medio-lateral, cm) positions were measured for each trial. During the treadmill locomotion adaptation period subject's 3D torso position was measured. We found that subjects in the Rotating Room group as compared to the Infinite Hallway group: 1) showed significantly greater deviation during post exposure testing in the heading direction and Y position opposite to the direction of optic flow experienced during treadmill walking 2) showed a significant monotonically increasing torso yaw angular rotation bias in the direction of optic flow during the treadmill adaptation exposure period. Subjects in both groups showed greater forward translation (in the +X direction) during the post treadmill stepping task that differed significantly from their pre exposure performance. Subjects in both groups reported no perceptual deviation in position during the stepping tasks. We infer that viewing simulated rotary self-motion during treadmill locomotion causes adaptive modification of sensory-motor integration in the control of position and trajectory during locomotion which functionally reflects adaptive changes in the integration of visual, vestibular, and proprioceptive cues. Such an adaptation in the control of position and heading direction during locomotion due to the congruence of sensory information demonstrates the potential for adaptive transfer between sensorimotor systems and suggests a common neural site for the processing and self-motion perception and concurrent adaptation in motor output. This will result in lack of subjects perception of deviation of position and trajectory during the post treadmill step test while blind folded

    Low-dose aspirin does not improve ovarian stimulation, endometrial response, or pregnancy rates for in vitro fertilization

    Get PDF
    BACKGROUND: The purpose of this study is to determine if low-dose aspirin improved ovarian stimulation, endometrial response, or IVF pregnancy rates in our program. METHODS: Retrospective analysis of 316 consecutive IVF cycles from 1995 through 2001. Aspirin 80 mg daily was initiated at the start of luteal leuprolide in 72 cycles. The 244 controls received no aspirin during treatment. RESULTS: The live birth rate in aspirin users was 29%, slightly lower compared to 41% in the no aspirin control group (p = 0.07). Implantation rates were 21% with aspirin and 30% in the control population (p = 0.01). There was no difference in the maximal endometrial thickness between aspirin and non-aspirin groups. The two groups were similar regarding age, gonadotropin ampules, embryos, number of embryos transferred, prior parity, diagnosis, use of intracytoplasmic sperm injection, and stimulation protocol. CONCLUSION: Low-dose aspirin was not beneficial to IVF patients in our program. Aspirin does not enhance endometrial thickness, augment the ovarian response, or improve pregnancy rates

    Mechanics, malignancy, and metastasis: The force journey of a tumor cell

    Full text link

    Effects of inhaled high-molecular weight hyaluronan in inflammatory airway disease

    No full text
    © 2016 The Author(s).Cystic fibrosis (CF) is a chronic inflammatory disease that is affecting thousands of patients worldwide. Adjuvant anti-inflammatory treatment is an important component of cystic fibrosis treatment, and has shown promise in preserving lung function and prolonging life expectancy. Inhaled high molecular weight hyaluronan (HMW-HA) is reported to improve tolerability of hypertonic saline and thus increase compliance, and has been approved in some European countries for use as an adjunct to hypertonic saline treatment in cystic fibrosis. However, there are theoretical concerns that HMW-HA breakdown products may be pro-inflammatory. In this clinical pilot study we show that sputum cytokines in CF patients receiving HMW-HA are not increased, and therefore HMW-HA does not appear to adversely affect inflammatory status in CF airways.This work was funded by the Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health
    • …
    corecore