5,527 research outputs found

    Effects of Flight on Gene Expression and Aging in the Honey Bee Brain and Flight Muscle

    Get PDF
    Honey bees move through a series of in-hive tasks (e.g., “nursing”) to outside tasks (e.g., “foraging”) that are coincident with physiological changes and higher levels of metabolic activity. Social context can cause worker bees to speed up or slow down this process, and foragers may revert back to their earlier in-hive tasks accompanied by reversion to earlier physiological states. To investigate the effects of flight, behavioral state and age on gene expression, we used whole-genome microarrays and real-time PCR. Brain tissue and flight muscle exhibited different patterns of expression during behavioral transitions, with expression patterns in the brain reflecting both age and behavior, and expression patterns in flight muscle being primarily determined by age. Our data suggest that the transition from behaviors requiring little to no flight (nursing) to those requiring prolonged flight bouts (foraging), rather than the amount of previous flight per se, has a major effect on gene expression. Following behavioral reversion there was a partial reversion in gene expression but some aspects of forager expression patterns, such as those for genes involved in immune function, remained. Combined with our real-time PCR data, these data suggest an epigenetic control and energy balance role in honey bee functional senescence

    Technical note: Rapid mineral determination in forages by X-ray fluorescence

    Get PDF
    A large portion of the cow's ration is composed of forages that can vary greatly in mineral concentrations, which may affect animal performance and health. Current methods for mineral analysis require sample destruction either through wet or dry ashing and complex analytical techniques for individual minerals. Energy dispersive X-ray fluorescence (EDXRF) is a nondestructive, multi-mineral, spectroscopy technique, which makes mineral quantification simple, direct, and affordable. The study objective was to evaluate the prediction performance of EDXRF of Na, Mg, P, S, Cl, Ca, K, Mn, Fe, Cu, and Zn concentrations in forages. Twelve certified plant samples with a wide range in mineral concentrations were used to develop calibrations, and 35 forages (18 alfalfa hays, 10 grass hays, 7 corn silages) with measured mineral concentrations, which were collected over several years from 3 proficiency programs, were used as an independent validation set. All the samples were previously dried and finely ground and were prepared by compressing them into a round dense pellet, 40 mm in diameter, using a 40-ton pneumatic laboratory press. Samples were scanned using an EDXRF instrument enhanced for lighter minerals like Na and Mg. Samples were scanned at 20 keV and at 40 KeV associated with an Al filter, for a total analysis time of approximately 6 min. Calibrations were developed with Bruker SpectraEDX (Bruker, Hamburg, Germany) software and optimized to minimize the standard error of calibration. All of the minerals had acceptable calibration performance with coefficient of determination ranging from 0.93 (P) and 0.99 (Cl, Ca, and Mn) and coefficients of variation within 5 to 14%, which are similar to the coefficients of variation of the reference analysis. The coefficients of variation for Na was an exception, with a coefficients of variation of 29%. The validation set obtained similar statistical results as that observed in calibration. The root mean square error of prediction corrected for bias was similar to the standard error of calibration, indicating that it is possible to build a robust calibrations that performed well across different type of forages by using 12 reference samples with a sufficient range in mineral concentrations that were determined accurately. A bias correction was necessary to improve prediction accuracy only for K (−0.23% dry matter) and Ca (−0.16% dry matter). Energy dispersive X-ray fluorescence demonstrated the ability to be an accurate, direct, and simple technique for forage mineral analysis

    The Antarctic dry valley lakes: Relevance to Mars

    Get PDF
    The similarity of the early environments of Mars and Earth, and the biological evolution which occurred on early Earth, motivates exobiologists to seriously consider the possiblity of an early Martian biota. Environments are being identified which could contain Martian life and areas which may presently contain evidence of this former life. Sediments which were thought to be deposited in large ice-covered lakes are present on Mars. Such localities were identified within some of the canyons of the Valles Marineris and more recently in the ancient terrain in the Southern Hemisphere. Perennially ice-covered Antarctic lakes are being studied in order to develop quantitative models that relate environmental factors to the nature of the biological community and sediment forming processes. These models will be applied to the Martian paleolakes to establish the scientific rationale for the exobiological study of ancient Martian sediments

    Mars rover sample return: An exobiology science scenario

    Get PDF
    A mission designed to collect and return samples from Mars will provide information regarding its composition, history, and evolution. At the same time, a sample return mission generates a technical challenge. Sophisticated, semi-autonomous, robotic spacecraft systems must be developed in order to carry out complex operations at the surface of a very distant planet. An interdisciplinary effort was conducted to consider how much a Mars mission can be realistically structured to maximize the planetary science return. The focus was to concentrate on a particular set of scientific objectives (exobiology), to determine the instrumentation and analyses required to search for biological signatures, and to evaluate what analyses and decision making can be effectively performed by the rover in order to minimize the overhead of constant communication between Mars and the Earth. Investigations were also begun in the area of machine vision to determine whether layered sedimentary structures can be recognized autonomously, and preliminary results are encouraging

    The Effect of Added Weight on Foot Anthropometry in Pregnant Women and Controls

    Get PDF
    Please refer to the pdf version of the abstract located adjacent to the title

    Enceladus: Biosignatures

    Get PDF
    Saturn's moon Enceladus is a new world for Astrobiology. Through the study of Enceladus' plumes new insights into its habitability will be gained. The four core parameters for life include: water, carbon, nitrogen, and energy; all were found in the plume. Carbon and nitrogen in the plume exist in forms easily usable by biological systems (CH4, HCN, NH3, H2, CO2, and organics up to C6). The first step to search for evidence of life is to define potential biosignatures for Enceladus

    Mars Rover Sample Return: A sample collection and analysis strategy for exobiology

    Get PDF
    For reasons defined elsewhere it is reasonable to search for biological signatures, both chemical and morphological, of extinct life on Mars. Life on Earth requries the presence of liquid water, therefore, it is important to explore sites on Mars where standing bodies of water may have once existed. Outcrops of layered deposits within the Valles Marineris appear to be ancient lake beds. Because the outcrops are well exposed, relatively shallow core samples would be very informative. The most important biological signature to detect would be organics, microfossils, or larger stromato-like structures, although the presence of cherts, carbonates, clays, and shales would be significant. In spite of the limitations of current robotics and pattern recognition, and the limitations of rover power, computation, Earth communication bandwidth, and time delays, a partial scenario was developed to implement such a scientific investigation. The rover instrumentation and the procedures and decisions and IR spectrometer are described in detail. Preliminary results from a collaborative effort are described, which indicate the rover will be able to autonomously detect stratification, and hence will ease the interpretation burden and lead to greater scientific productivity during the rover's lifetime

    GEANT simulation of energy losses of slow hadrons

    Get PDF
    The algorithm of the simulation of energy losses for hadrons with kinetic energy down to few eV is described. The details of its implementation in Geant4 are discussed. The comparison of the results of simulation with the experimental data is presented

    Viral hepatitis and iron dysregulation: molecular pathways and the role of lactoferrin

    Get PDF
    The liver is a frontline immune site specifically designed to check and detect potential pathogens from the bloodstream to maintain a general state of immune hyporesponsiveness. One of the main functions of the liver is the regulation of iron homeostasis. The liver detects changes in systemic iron requirements and can regulate its concentration. Pathological states lead to the dysregulation of iron homeostasis which, in turn, can promote infectious and inflammatory processes. In this context, hepatic viruses deviate hepatocytes' iron metabolism in order to better replicate. Indeed, some viruses are able to alter the expression of iron-related proteins or exploit host receptors to enter inside host cells. Lactoferrin (Lf), a multifunctional iron-binding glycoprotein belonging to the innate immunity, is endowed with potent antiviral activity, mainly related to its ability to block viral entry into host cells by interacting with viral and/or cell surface receptors. Moreover, Lf can act as an iron scavenger by both direct iron-chelation or the modulation of the main iron-related proteins. In this review, the complex interplay between viral hepatitis, iron homeostasis, and inflammation as well as the role of Lf are outlined
    corecore