7,397 research outputs found
Adverse events following influenza immunization reported by healthcare personnel using active surveillance based on text messages
Studies have demonstrated that healthcare personnel (HCP) have concerns about the potential side effects of trivalent inactivate influenza vaccine (IIV3).1-3 A recent metaanalysis of reasons HCP refuse IIV3 indicates the strongest predictors of vaccine acceptance are belief that the vaccine is safe and belief the vaccine does not cause the disease it is meant to prevent.
What can 14 CO measurements tell us about OH?
The possible use of 14CO measurements to constrain hydroxyl radical (OH) concentrations in the atmosphere is investigated. 14CO is mainly produced in the upper atmosphere from cosmic radiation. Measurements of 14CO at the surface show lower concentrations compared to the upper atmospheric source region, which is the result of oxidation by OH. In this paper, the sensitivity of 14CO mixing ratio surface measurements to the 3-D OH distribution is assessed with the TM5 model. Simulated 14CO mixing ratios agree within a few molecules 14CO cmÂż3 (STP) with existing measurements at five locations worldwide. The simulated cosmogenic 14CO distribution appears mainly sensitive to the assumed upper atmospheric 14C source function, and to a lesser extend to model resolution. As a next step, the sensitivity of 14CO measurements to OH is calculated with the adjoint TM5 model. The results indicate that 14CO measurements taken in the tropics are sensitive to OH in a spatially confined region that varies strongly over time due to meteorological variability. Given measurements with an accuracy of 0.5 molecules 14CO cmÂż3 STP, a good characterization of the cosmogenic 14CO fraction, and assuming perfect transport modeling, a single 14CO measurement may constrain OH to 0.2Âż0.3Ă—106 molecules OH cmÂż3 on time scales of 6 months and spatial scales of 70Ă—70 degrees (latitudeĂ—longitude) between the surface and 500 hPa. The sensitivity of 14CO measurements to high latitude OH is about a factor of five higher. This is in contrast with methyl chloroform (MCF) measurements, which show the highest sensitivity to tropical OH, mainly due to the temperature dependent rate constant of the MCFÂżOH reaction. A logical next step will be the analysis of existing 14CO measurements in an inverse modeling framework. This paper presents the required mathematical framework for such an analysis
Human P450 CYP17A1: Control of Substrate Preference by Asparagine 202
CYP17A1 is a key steroidogenic enzyme known to conduct several distinct chemical transformations on multiple substrates. In its hydroxylase activity, this enzyme adds a hydroxyl group at the 17α position of both pregnenolone and progesterone at approximately equal rates. However, the subsequent 17,20 carbon–carbon scission reaction displays variable substrate specificity in the numerous CYP17A1 isozymes operating in vertebrates, manifesting as different Kd and kcat values when presented with 17α-hydroxypregnenlone (OHPREG) versus 17α-hydroxyprogesterone (OHPROG). Here we show that the identity of the residue at position 202 in human CYP17A1, thought to form a hydrogen bond with the A-ring alcohol substituent on the pregnene- nucleus, is a key driver of this enzyme’s native preference for OHPREG. Replacement of asparagine 202 with serine completely reverses the preference of CYP17A1, more than doubling the rate of turnover of the OHPROG to androstenedione reaction and substantially decreasing the rate of formation of dehydroepiandrosterone from OHPREG. In a series of resonance Raman experiments, it was observed that, in contrast with the case for the wild-type protein, in the mutant the 17α alcohol of OHPROG tends to form a H-bond with the proximal rather than terminal oxygen of the oxy–ferrous complex. When OHPREG was a substrate, the mutant enzyme was found to have a H-bonding interaction with the proximal oxygen that is substantially weaker than that of the wild type. These results demonstrate that a single-point mutation in the active site pocket of CYP17A1, even when far from the heme, has profound effects on steroidogenic selectivity in androgen biosynthesis
Seeing many-body effects in single- and few-layer graphene: Observation of two-dimensional saddle-point excitons
Significant excitonic effects were observed in graphene by measuring its
optical conductivity in a broad spectral range including the two-dimensional
{\pi}-band saddle-point singularities in the electronic structure. The strong
electron-hole interactions manifest themselves in an asymmetric resonance
peaked at 4.62 eV, which is red-shifted by nearly 600 meV from the value
predicted by ab-initio GW calculations for the band-to-band transitions. The
observed excitonic resonance is explained within a phenomenological model as a
Fano interference of a strongly coupled excitonic state and a band continuum.
Our experiment also showed a weak dependence of the excitonic resonance in
few-layer graphene on layer thickness. This result reflects the effective
cancellation of the increasingly screened repulsive electron-electron (e-e) and
attractive electron-hole (e-h) interactions.Comment: 9 pages, 3 figures, In PR
Recommended from our members
Towards the Design of Resilient Large-scale Engineering Systems
Resilience has mostly been thought of as the ability to recover from adversity. However, it is now increasingly recognised that resilience should
not only serve as a means for organisations to survive hardship, but also to thrive and prosper. For large-scale engineering systems, such as
telecommunications networks and power grids, this is vital due to relatively long life cycles leading to large uncertainties, and also due to the
significant investments involved. Exactly how this and thus resilience should be designed into such systems, however, is less well defined.
Here, the term resilience is explored through engineering, organisational and ecological literature to understand differing perspectives from
select domains before distilling these into the three engineering design lifecycle properties: robustness, adaptability and flexibility. In particular,
a distinction is highlighted between adaptability and flexibility following findings in literature. These properties and the concept of resilience
are discussed with reference to system performance in order to serve as requirements for designing large-scale resilient engineering systems
Multilevel blocking approach to the fermion sign problem in path-integral Monte Carlo simulations
A general algorithm toward the solution of the fermion sign problem in
finite-temperature quantum Monte Carlo simulations has been formulated for
discretized fermion path integrals with nearest-neighbor interactions in the
Trotter direction. This multilevel approach systematically implements a simple
blocking strategy in a recursive manner to synthesize the sign cancellations
among different fermionic paths throughout the whole configuration space. The
practical usefulness of the method is demonstrated for interacting electrons in
a quantum dot.Comment: 4 pages RevTeX, incl. two figure
A handheld high-sensitivity micro-NMR CMOS platform with B-field stabilization for multi-type biological/chemical assays
We report a micro-nuclear magnetic resonance (NMR) system compatible with multi-type biological/chemical lab-on-a-chip assays. Unified in a handheld scale (dimension: 14 x 6 x 11 cm³, weight: 1.4 kg), the system is capable to detect<100 pM of Enterococcus faecalis derived DNA from a 2.5 μL sample. The key components are a portable magnet (0.46 T, 1.25 kg) for nucleus magnetization, a system PCB for I/O interface, an FPGA for system control, a current driver for trimming the magnetic (B) field, and a silicon chip fabricated in 0.18 μm CMOS. The latter, integrated with a current-mode vertical Hall sensor and a low-noise readout circuit, facilitates closed-loop B-field stabilization (2 mT → 0.15 mT), which otherwise fluctuates with temperature or sample displacement. Together with a dynamic-B-field transceiver with a planar coil for micro-NMR assay and thermal control, the system demonstrates: 1) selective biological target pinpointing; 2) protein state analysis; and 3) solvent-polymer dynamics, suitable for healthcare, food and colloidal applications, respectively. Compared to a commercial NMR-assay product (Bruker mq-20), this platform greatly reduces the sample consumption (120x), hardware volume (175x), and weight (96x)
Towards the Design of Resilient Large-scale Engineering Systems
Resilience has mostly been thought of as the ability to recover from adversity. However, it is now increasingly recognised that resilience should
not only serve as a means for organisations to survive hardship, but also to thrive and prosper. For large-scale engineering systems, such as
telecommunications networks and power grids, this is vital due to relatively long life cycles leading to large uncertainties, and also due to the
significant investments involved. Exactly how this and thus resilience should be designed into such systems, however, is less well defined.
Here, the term resilience is explored through engineering, organisational and ecological literature to understand differing perspectives from
select domains before distilling these into the three engineering design lifecycle properties: robustness, adaptability and flexibility. In particular,
a distinction is highlighted between adaptability and flexibility following findings in literature. These properties and the concept of resilience
are discussed with reference to system performance in order to serve as requirements for designing large-scale resilient engineering systems
- …