6,772 research outputs found

    Soft thermal contributions to 3-loop gauge coupling

    Get PDF
    We analyze 3-loop contributions to the gauge coupling felt by ultrasoft ("magnetostatic") modes in hot Yang-Mills theory. So-called soft/hard terms, originating from dimension-six operators within the soft effective theory, are shown to cancel 1097/1098 of the IR divergence found in a recent determination of the hard 3-loop contribution to the soft gauge coupling. The remaining 1/1098 originates from ultrasoft/hard contributions, induced by dimension-six operators in the ultrasoft effective theory. Soft 3-loop contributions are likewise computed, and are found to be IR divergent, rendering the ultrasoft gauge coupling non-perturbative at relative order O(alphas^{3/2}). We elaborate on the implications of these findings for effective theory studies of physical observables in thermal QCD.Comment: 31 pages. v2: clarifications added, published versio

    Voltage modulated electro-luminescence spectroscopy and negative capacitance - the role of sub-bandgap states in light emitting devices

    Full text link
    Voltage modulated electroluminescence spectra and low frequency ({\leq} 100 kHz) impedance characteristics of electroluminescent diodes are studied. Voltage modulated light emission tracks the onset of observed negative capacitance at a forward bias level for each modulation frequency. Active participation of sub-bandgap defect states in minority carrier recombination dynamics is sought to explain the results. Negative capacitance is understood as a necessary dielectric response to compensate any irreversible transient changes in the minority carrier reservoir due to radiative recombinations mediated by slowly responding sub-bandgap defects. Experimentally measured variations of the in-phase component of modulated electroluminescence spectra with forward bias levels and modulation frequencies support the dynamic influence of these states in the radiative recombination process. Predominant negative sign of the in-phase component of voltage modulated electroluminescence signal further confirms the bi-molecular nature of light emission. We also discuss how these states can actually affect the net density of minority carriers available for radiative recombination. Results indicate that these sub-bandgap states can suppress external quantum efficiency of such devices under high frequency operation commonly used in optical communication.Comment: 21 pages, 4 sets of figure

    Time series of high resolution spectra of SN 2014J observed with the TIGRE telescope

    Full text link
    We present a time series of high resolution spectra of the Type Ia supernova 2014J, which exploded in the nearby galaxy M82. The spectra were obtained with the HEROS echelle spectrograph installed at the 1.2 m TIGRE telescope. We present a series of 33 spectra with a resolution of R = 20, 000, which covers the important bright phases in the evolution of SN 2014J during the period from January 24 to April 1 of 2014. The spectral evolution of SN 2014J is derived empirically. The expansion velocities of the Si II P-Cygni features were measured and show the expected decreasing behaviour, beginning with a high velocity of 14,000 km/s on January 24. The Ca II infrared triplet feature shows a high velocity component with expansion velocities of > 20, 000 km/s during the early evolution apart from the normal component showing similar velocities as Si II. Further broad P-Cygni profiles are exhibited by the principal lines of Ca II, Mg II and Fe II. The TIGRE SN 2014J spectra also resolve several very sharp Na I D doublet absorption components. Our analysis suggests interesting substructures in the interstellar medium of the host galaxy M82, as well as in our Milky Way, confirming other work on this SN. We were able to identify the interstellar absorption of M82 in the lines of Ca II H & K at 3933 and 3968 A as well as K I at 7664 and 7698 A. Furthermore, we confirm several Diffuse Interstellar Bands, at wavelengths of 6196, 6283, 6376, 6379 and 6613 A and give their measured equivalent widths.Comment: 11 pages, 10 figures, accepted for publication in MNRA

    Influence of Grazing Management of Autumn Soil Water Deficit Below Perennial Grass Pastures

    Get PDF
    An assessment was made of the influence of a Phalaris based pasture which was either continuously stocked, rotationally grazed or spelled during summer on the autumn soil water deficit. Soil remained close to saturation at 120 cm under continuously grazed pasture. Rotationally grazed and summer spelled pastures maintained the soil profile at 120 cm in a dry state during summer and autumn. Differences between years and sites could be partly explained by differences in summer rainfall, solar radiation and the amount of green plant material which grew when stock were excluded over the summer-autumn period. Periodic spelling appears to improve the effectiveness of Phalaris based pastures in dryland salinity management

    Magnetic Flares on Asymptotic Giant Branch Stars

    Get PDF
    We investigate the consequences of magnetic flares on the surface of asymptotic giant branch (AGB) and similar stars. In contrast to the solar wind, in the winds of AGB stars the gas cooling time is much shorter than the outflow time. As a result, we predict that energetic flaring will not inhibit, and may even enhance, dust formation around AGB stars. If magnetic flares do occur around such stars, we expect some AGB stars to exhibit X-ray emission; indeed certain systems including AGB stars, such as Mira, have been detected in X-rays. However, in these cases, it is difficult to distinguish between potential AGB star X-ray emission and, e.g., X-ray emission from the vicinity of a binary companion. Analysis of an archival ROSAT X-ray spectrum of the Mira system suggests an intrinsic X-ray luminosity 2x10^{29} erg/sec and temperature 10^7 K. These modeling results suggest that magnetic activity, either on the AGB star (Mira A) or on its nearby companion (Mira B), is the source of the X-rays, but do not rule out the possibility that the X-rays are generated by an accretion disk around Mira B.Comment: ApJ, Accepted; revised version of astro-ph/020923

    Globular Clusters in the dE,N galaxy NGC 3115 DW1: New Insights from Spectroscopy and HST Photometry

    Full text link
    The properties of globular clusters in dwarf galaxies are key to understanding the formation of globular cluster systems, and in particular in verifying scenarios in which globular cluster systems of larger galaxies formed (at least partly) from the accretion of dwarf galaxies. Here, we revisit the globular cluster system of the dE,N galaxy NGC 3115 DW1 - a companion of the nearby S0 galaxy NGC 3115 - adding Keck/LRIS spectroscopy and HST/WFPC2 imaging to previous ground-based photometry. Spectra for seven globular clusters reveal normal abundance ratios with respect to the Milky Way and M31 clusters, as well as a relatively high mean metallicity ([Fe/H] = -1.0+/-0.1 dex). Crude kinematics indicate a high velocity dispersion within 10 kpc which could either be caused by dark matter dominated outer regions, or by the stripping of outer globular clusters by the nearby giant galaxy NGC 3115. The total galaxy mass out to 3 and 10 kpc lies between 10^10 and 10^11 solar masses and 2*10^10 and 4*10^11 solar masses, respectively, depending on the mass estimator used and the assumptions on cluster orbits and systemic velocity. The HST imaging allows measurement of sizes for two clusters, returning core radii around 2.0 pc, similar to the sizes observed in other galaxies. Spectroscopy allows an estimate of the degree of contamination by foreground stars or background galaxies for the previous ground-based photometry, but does not require a revision of previous results: NGC 3115 DW1 hosts around 60+/-20 clusters which corresponds to a specific frequency of 4.9+/-1.9, on the high end for massive dEs. Given its absolute magnitude (M_V=-17.7 mag) and the properties of its cluster system, NGC 3115 DW1 appears to be a transition between a luminous dE and low-luminosity E galaxy.Comment: 25 pages, 8 figures, accepted for publication in The Astronomical Journal, August 2000 issu

    Learning and generation of long-range correlated sequences

    Full text link
    We study the capability to learn and to generate long-range, power-law correlated sequences by a fully connected asymmetric network. The focus is set on the ability of neural networks to extract statistical features from a sequence. We demonstrate that the average power-law behavior is learnable, namely, the sequence generated by the trained network obeys the same statistical behavior. The interplay between a correlated weight matrix and the sequence generated by such a network is explored. A weight matrix with a power-law correlation function along the vertical direction, gives rise to a sequence with a similar statistical behavior.Comment: 5 pages, 3 figures, accepted for publication in Physical Review

    Ohmic contacts to n-type germanium with low specific contact resistivity

    Get PDF
    A low temperature nickel process has been developed that produces Ohmic contacts to n-type germanium with specific contact resistivities down to (2.3 ± 1.8) x10<sup>-7</sup> Ω-cm<sup>2</sup> for anneal temperatures of 340 degC. The low contact resistivity is attributed to the low resistivity NiGe phase which was identified using electron diffraction in a transmission electron microscope. Electrical results indicate that the linear Ohmic behaviour of the contact is attributed to quantum mechanical tunnelling through the Schottky barrier formed between the NiGe alloy and the heavily doped n-Ge.<p></p&gt
    corecore