111,760 research outputs found

    Sharp bounds on enstrophy growth in the viscous Burgers equation

    Full text link
    We use the Cole--Hopf transformation and the Laplace method for the heat equation to justify the numerical results on enstrophy growth in the viscous Burgers equation on the unit circle. We show that the maximum enstrophy achieved in the time evolution is scaled as E3/2\mathcal{E}^{3/2}, where E\mathcal{E} is the large initial enstrophy, whereas the time needed for reaching the maximal enstrophy is scaled as E1/2\mathcal{E}^{-1/2}. These bounds are sharp for sufficiently smooth initial conditions.Comment: 12 page

    Axial-flow pump design digital computer program

    Get PDF
    FORTRAN program for computerized design of axial flow pump by blade element analysi

    Breaking Symmetries in Graph Representation

    Get PDF
    There are many complex combinatorial problems which involve searching for an undirected graph satisfying a certain property. These problems are often highly challenging because of the large number of isomorphic representations of a possible solution. In this paper we introduce novel, effective and compact, symmetry breaking constraints for undirected graph search. While incomplete, these prove highly beneficial in pruning the search for a graph. We illustrate the application of symmetry breaking in graph representation to resolve several open instances in extremal graph theory

    Three-Body Encounters of Black Holes in Globular Clusters

    Get PDF
    Evidence has been mounting for the existence of black holes with masses from 10^2 to 10^4 M_Solar associated with stellar clusters. Such intermediate-mass black holes (IMBHs) will encounter other black holes in the dense cores of these clusters. The binaries produced in these interactions will be perturbed by other objects as well thus changing the orbital characteristics of the binaries. These binaries and their subsequent mergers due to gravitational radiation are important sources of gravitational waves. We present the results of numerical simulations of high mass ratio encounters, which help clarify the interactions of intermediate-mass black holes in globular clusters and help determine what types of detectable gravitational wave signatures are likely.Comment: 4 pages, 3 figures to appear in the proceedings of The Astrophysics of Gravitational Wave Sources, College Park, MD, 24-26 April 200

    The Higgs Sector of the Next-to-Minimal Supersymmetric Standard Model

    Full text link
    The Higgs boson spectrum of the Next-to-Minimal Supersymmetric Standard Model is examined. The model includes a singlet Higgs field S in addition to the two Higgs doublets of the minimal extension. `Natural' values of the parameters of the model are motivated by their renormalization group running and the vacuum stability. The qualitative features of the Higgs boson masses are dependent on how strongly the Peccei-Quinn U(1) symmetry of the model is broken, measured by the self-coupling of the singlet field in the superpotential. We explore the Higgs boson masses and their couplings to gauge bosons for various representative scenarios.Comment: 32 pages with 12 figures; references and parameters updated; a few minor comments adde

    Route planning in a four-dimensional environment

    Get PDF
    Robots must be able to function in the real world. The real world involves processes and agents that move independently of the actions of the robot, sometimes in an unpredictable manner. A real-time integrated route planning and spatial representation system for planning routes through dynamic domains is presented. The system will find the safest most efficient route through space-time as described by a set of user defined evaluation functions. Because the route planning algorthims is highly parallel and can run on an SIMD machine in O(p) time (p is the length of a path), the system will find real-time paths through unpredictable domains when used in an incremental mode. Spatial representation, an SIMD algorithm for route planning in a dynamic domain, and results from an implementation on a traditional computer architecture are discussed

    Identifying the Higgs Spin and Parity in Decays to Z Pairs

    Get PDF
    Higgs decays to Z boson pairs may be exploited to determine spin and parity of the Higgs boson, a method complementary to spin-parity measurements in Higgs-strahlung. For a Higgs mass above the on-shell ZZ decay threshold, a model-independent analysis can be performed, but only by making use of additional angular correlation effects in gluon-gluon fusion at the LHC and gamma-gamma fusion at linear colliders. In the intermediate mass range, in which the Higgs boson decays into pairs of real and virtual Z bosons, threshold effects and angular correlations, parallel to Higgs-strahlung, may be adopted to determine spin and parity, though high event rates will be required for the analysis in practice.Comment: 14 pages, 2 postscript figure

    A Comparison of Intermediate Mass Black Hole Candidate ULXs and Stellar-Mass Black Holes

    Full text link
    Cool thermal emission components have recently been revealed in the X-ray spectra of a small number of ultra-luminous X-ray (ULX) sources with L_X > 1 E+40 erg/s in nearby galaxies. These components can be well fitted with accretion disk models, with temperatures approximately 5-10 times lower than disk temperatures measured in stellar-mass Galactic black holes when observed in their brightest states. Because disk temperature is expected to fall with increasing black hole mass, and because the X-ray luminosity of these sources exceeds the Eddington limit for 10 Msun black holes (L_Edd = 1.3 E+39 erg/s), these sources are extremely promising intermediate-mass black hole candidates (IMBHCs). In this Letter, we directly compare the inferred disk temperatures and luminosities of these ULXs, with the disk temperatures and luminosities of a number of Galactic black holes. The sample of stellar-mass black holes was selected to include different orbital periods, companion types, inclinations, and column densities. These ULXs and stellar-mass black holes occupy distinct regions of a L_X -- kT diagram, suggesting these ULXs may harbor IMBHs. We briefly discuss the important strengths and weaknesses of this interpretation.Comment: 4 pages, 2 color figures, uses emulateapj.sty and apjfonts.sty, subm. to ApJ
    corecore