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Abstract

Higgs decays to Z boson pairs may be exploited to determine spin and parity of
the Higgs boson, a method complementary to spin–parity measurements in Higgs-
strahlung. For a Higgs mass above the on-shell ZZ decay threshold, a model-
independent analysis can be performed, but only by making use of additional angular
correlation effects in gluon-gluon fusion at the LHC and γγ fusion at linear colliders. In
the intermediate mass range, in which the Higgs boson decays into pairs of real and vir-
tual Z bosons, threshold effects and angular correlations, parallel to Higgs-strahlung,
may be adopted to determine spin and parity, though high event rates will be required
for the analysis in practice.
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1 Introduction

The Higgs boson in the Standard Model must necessarily be a scalar particle, assigned
the external quantum numbers J PC = 0++; extended models such as CP–invariant super-
symmetric theories also contain these pure scalar states. The assignment of the quantum
numbers invites investigating experimental opportunities to identify spin and parity of the
Higgs state at future high-energy colliders. The determination of the parity and the par-
ity mixing of spinless Higgs bosons have been extensively investigated in Refs.[1]-[5]. The
model–independent identification of spin and parity of the Higgs particle has recently been
demonstrated for Higgs–strahlung, e+e− → ZH , in Ref.[6], and experimental simulations
have been performed in Ref.[7]. The rise of the excitation curve near the threshold combined
with angular distributions render the spin-parity analysis of the Higgs boson unambiguous
in this channel.

In the present note we study methods by which the spinless nature and the positive parity
of the Higgs boson can be identified through the decay process

H → ZZ → (f1f̄1) (f2f̄2) (1)

This process includes clean µ+µ− and e+e− decay channels for isolating the signal from the
background and allowing a complete reconstruction of the kinematical configuration with
good precision [8, 9, 10]. While the dominant decay mode for Higgs masses below ∼ 140
GeV is the bb̄ decay channel, the ZZ mode, one of the vector bosons being virtual below the
threshold for two real Z bosons, becomes leading for higher masses next to the WW decay
channel.

Higgs decays to Z bosons can provide us with a clear picture of these external quantum
numbers for Higgs masses above the ZZ threshold, if auxiliary angular distributions are
included that are generated in specific production mechanism such as gluon fusion at the LHC
and γγ fusion at linear colliders. Below the mass range for on-shell ZZ decays, threshold
analyses combined with angular correlations in Z∗Z decays [with one of the electroweak
bosons, Z∗, being virtual] may be exploited in analogy to Higgs-strahlung at e+e− linear
colliders. The picture is theoretically transparent in this mass range but low rates and large
backgrounds render this Z decay channel quite difficult for the analysis of spin and parity
of the Higgs particle.

2 Heavy Higgs Bosons

Above the on-shell ZZ threshold, the partial width for Higgs decays into Z boson pairs is
given in the Standard Model by the expression

Γ(H → ZZ) =

√
2GF

16π
M3

H

(
1− 4x + 12x2

)
β (2)

where x = M2
Z/M2

H , and β =
√

1− 4M2
Z/M2

H is the velocity of the Z bosons in the Higgs rest
frame. For large Higgs masses, the Z bosons are longitudinally polarized according to the
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Figure 1: The definition of the polar angles θi (i = 1, 2) and the azimuthal angle ϕ for the
sequential decay H → Z(∗)Z → (f1f̄1)(f2f̄2) in the rest frame of the Higgs particle.

equivalence principle, while the longitudinal and transverse polarization states are populated
democratically near the threshold.

The characteristic observables for measuring spin and parity of the Higgs boson are the
angular distributions of the final-state fermions in the decays Z → f f̄ , encoding the helicities
of the Z states. The combined polar and azimuthal angular distributions are presented for
the Standard Model in the Appendix.

Polar and azimuthal angular distributions give independent access to spin and parity of
the Higgs boson. Denoting the polar angles of the fermions f1, f2 in the rest frames of the Z
bosons by θ1 and θ2, and the azimuthal angle between the planes of the fermion pairs by ϕ,
[see Fig.1], the differential distribution in cos θ1, cos θ2 is predicted by the Standard Model
to be

dΓH

d cos θ1d cos θ2
∼ sin2 θ1 sin2 θ2

+
1

2γ4(1 + β2)2

[
(1 + cos2 θ1)(1 + cos2 θ2) + 4 η1 η2 cos θ1 cos θ2

]
(3)

while the corresponding distribution with respect to the azimuthal angle ϕ is

dΓH

dϕ
∼ 1− η1η2

1

2

(
3π

4

)2 γ2(1 + β2)

γ4(1 + β2)2 + 2
cos ϕ +

1

2

1

γ4(1 + β2)2 + 2
cos 2ϕ (4)

where ηi = 2viai/(v2
i + a2

i ) is the polarization degree with the electroweak charges
vi = 2I3i − 4ei sin

2 θW and ai = 2I3i of the fermion fi; and γ = 1/
√

1− β2 is the Lorentz-
boost factor of the Z bosons. For large Higgs masses, the longitudinal Z polarization is
reflected in the asymptotic behaviour of the double differential distribution, approaching
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∼ sin2 θ1 sin2 θ2 in this limit. Also any ϕ dependence disappears in this limit. The ϕ dis-
tribution has been analyzed in a recent experimental simulation as a tool to shed light on
Higgs spin measurements at the LHC, Ref. [10].

As a discriminant, the two distributions (3) and (4) can readily be confronted with the
decay distributions of a pseudo-scalar particle into two Z bosons carrying the momenta k1

and k2. While the scalar decay amplitude can be expressed as a scalar product of the two
Z polarization vectors, A+ = ε∗1 · ε∗2, dominated by the large longitudinal wave functions,

the pseudo-scalar decay amplitude, A− = det[k1, k2, ε
∗
1, ε

∗
2] ∼

→
k1 · (

→
ε∗1 ×

→
ε∗2), is non-vanishing

only for transverse Z polarization which gives rise to the following angular distributions,
independent of the Higgs-mass value:

dΓ

d cos θ1d cos θ2
∼ (1 + cos2 θ1)(1 + cos2 θ2) + 4 η1η2 cos θ1 cos θ2 (5)

and

dΓ

dϕ
∼ 1− 1

4
cos 2ϕ (6)

The two distributions for negative-parity decays are distinctly different from the positive-
parity form predicted by the Standard Model. This is shown for a Higgs mass MH = 280 GeV
in Fig.2 for the azimuthal distributions. The predictions will be distorted by experimental
cuts which however can be corrected for as shown in Ref.[10]. Moreover, the accuracy will
improve significantly with rising statistics beyond the integrated luminosity adopted in the
figure.

This result can systematically be generalized to arbitrary spin and parity assignments
of the decaying particle. The helicity formalism is the most convenient theoretical tool for
performing this analysis. Denoting the basic helicity amplitude [11] for arbitrary H spin-J
by

〈Z(λ1)Z(λ2)|HJ (m)〉 =
g

W
MZ

cos θW

Tλ1λ2 dJm, λ1−λ2
(Θ) e−i(m−λ1+λ2)Φ (7)

the reduced vertex Tλ1λ2 depends only on the helicities of the two real Z bosons, but it is
independent of the H spin component m along the polarization axis of the decaying particle.
This axis is defined by the polar and azimuthal angles, Θ and Φ, in the coordinate system
in which the momentum of the Z boson decaying to f1f̄1 points to the positive z–axis and
the f1 momentum defines the xz plane with the x-component taken positive, cf. Fig.1. The
standard coupling is split off explicitly.

The normality of the Higgs state, nH = (−1)J P, connects the helicity amplitudes un-
der parity transformations. If the interactions determining the vertex (7) are P invariant,
equivalent to CP invariance in this specific case, the reduced vertices are related,

Tλ1λ2 = nH T−λ1 −λ2 (8)

Above the threshold for two real Z bosons, the helicity amplitudes are restricted further by
Bose symmetry as

Tλ1λ2 = (−1)J Tλ2λ1 (9)
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Figure 2: The azimuthal distributions, dΓ/dϕ, for the Standard Model Higgs boson and a
pseudoscalar boson, with a Higgs mass of 280 GeV. The histogram for the Standard Model
shows the expected result from 900 signal events corresponding to an integrated luminosity of∫ L dt = 300 fb−1 at LHC [with efficiencies and cuts included according to the experimental
simulation Ref.[10]]. The curves show the exact theoretical dependences for the scalar and
pseudoscalar, appropriately normalised.

independently of the parity of the decaying particle.

For a CP invariant theory the polar–angle distributions can be written in the form

dΓ

d cos θ1d cos θ2
∼ sin2 θ1 sin2 θ2 |T00|2 +

1

2
(1 + cos2 θ1)(1 + cos2 θ2)

[
|T11|2 + |T1,−1|2

]
+(1 + cos2 θ1) sin2 θ2 |T10|2 + sin2 θ1 (1 + cos2 θ2) |T01|2

+2 η1η2 cos θ1 cos θ2

[
|T11|2 − |T1,−1|2

]
(10)

while the general azimuthal angular distribution reads

dΓ

dϕ
∼ |T11|2 + |T10|2 + |T1,−1|2 + |T01|2 + |T00|2/2

+η1η2

(
3π

8

)2

<e(T11T
∗
00 + T10T

∗
0,−1) cosϕ +

1

4
<e(T11T

∗
−1,−1) cos 2ϕ (11)
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The helicity amplitudes of the decay H → ZZ in the Standard Model are given by

T00 = M2
H/(2M2

Z)− 1, T11 = −1, T10 = T01 = T1,−1 = 0 (12)

and the Higgs boson carries even normality: nH = +1.

The most general HZZ vertex is given by the expression

J =
gWMZ

cos θW
Tµνβ1...βJ ε∗(Z1)

µ ε∗(Z2)
ν ε(H)β1...βJ (13)

While εµ and εν are the usual spin–1 polarization vectors, the spin–J polarization tensor
εβ1...βJ of the state H has the notable properties of being symmetric, traceless and orthogonal
to the 4-momentum of the Higgs boson pβi, and it can be constructed from products of
suitably chosen polarization vectors. Tµνβ1...βJ is normalized such that Tµ ν = gµ ν in the
Standard Model. Moreover, with the assumption of massless leptons in the final state,
Tµνβ1...βJ is transverse due to the conservation of the lepton currents, strongly constraining
the form of the tensor1.

Odd normality:
When comparing with the prediction of the Standard Model, it is quite easy to rule out all
states for odd normality: J P = 0−, 1+, 2−, 3+, . . .. Since the helicity amplitude T00 must
vanish by the relation (8) for odd normality, the observation of a non-zero ∼ sin2 θ1 sin2 θ2

correlation in Eq.(10) as predicted by the Standard Model, eliminates all odd-normality
states.

Even normality:
In the chain of even-normality states J P = 1−, 2+, 3−, 4+, . . ., the odd-spin states 1−, 3−,
. . ., can easily be excluded by observing the sin2 θ1 sin2 θ2 correlation induced by T00 in the
Standard Model, but forbidden by Bose symmetry for even-normality odd-spin states.

Excluding even-normality even-spin states 2+, 4+, . . . is a much more difficult task. In
general, the vertex (7) for the higher even–J Higgs state will lead to four–fermion angular
correlations different from those for the spin–0 case. However, if the tensor Tµνβ1...βJ is of
the form

Tµνβ1...βJ =
[
TJ=0

µν

]
kβ1...kβJ (14)

[with k = k1 − k2], the unpolarized higher even–J state generates the same angular cor-
relations of the Z decay products as the spin–0 state. Thus, from final-state distributions
alone, without exploiting non-trivial helicity information from the decaying state, a model-
independent spin-parity analysis cannot be carried out.

However, special production mechanisms such as gluon fusion gg → H at LHC [8, 9]
and photon fusion γγ → H in the Compton mode of linear colliders [12] can be successfully
exploited to close the gap.

In the gluon fusion process gg → H , which is the dominant Higgs production process
in the Standard Model at the LHC, Refs.[13, 14], the produced states transport non-trivial

1The most general tensor couplings of the HZZ vertex for Higgs particles of spin ≤ 2 are listed in Table.1.
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spin information. The most general spin–J tensor Γµνβ1...βJ for the ggH coupling2, apart
from trivial factors, is the direct product of the tensor Γ

µνβiβj

(2)

Γ
µνβiβj

(2) = a1g
µν
⊥ qβiqβj + a2(g

µβi
⊥ g

νβj

⊥ + g
µβj

⊥ gνβi
⊥ ) M2

H (15)

isomorphic with the spin-2 tensor, and direct products of the momentum vectors
qβ = (q1 − q2)

β of the two gluon momenta q1 and q2, as required by the properties of the

spin-J wave-function εβ1...βJ . Here, the metric tensors, gµβi

⊥ and g
νβj

⊥ , are defined to be or-
thogonal to qµ

1 and qν
2 , while the tensor gµν

⊥ is orthogonal to both qµ
1 and qν

2 . This tensor also
describes the spin-0 state [ while the spin-1 tensor vanishes as spin–1 states do not couple to
pairs of gluons or photons according to Yang’s theorem]. Assuming the HZZ coupling to
be of the form (14), the polar–angle distribution for the process gg → H → ZZ is given by
the differential cross section

dσ

d cosΘ
[ gg → H → ZZ] ∼ |a1|2

[
P 0
J (cos Θ)

]2
+ 12|a2|2

[
P 2
J (cos Θ)

]2
(16)

where Θ is the polar angle between the momenta of a gluon and a Z boson in the gg
center–of–mass frame. The two functions P2

J and P0
J are associated Legendre functions

with non-trivial cos Θ dependence except for J = 0, see Ref.[16]. Therefore, the distribution
is isotropic only for a spin–0 Higgs particle, but it is an–isotropic for all higher even–spin
Higgs particles. Thus, the zero–spin of the Higgs boson can be checked through the lack of
the polar (and azimuthal) angle correlations between the initial state and final state particles
in the combined process of production gg → H and decay H → ZZ. [The transition from
gg to γγ → H → ZZ, cf. Ref.[17] for the Standard Model, follows the same pattern.]

3 Intermediate Higgs-Mass Range

Rates for Higgs decays H → Z∗Z to a pair of virtual and real Z bosons are suppressed
by one power of the electroweak coupling, so that only a limited sample of events can be
exploited for detailed analyses beyond the search, see e.g. Refs.[8, 9, 10]. Nevertheless, we
will summarize the essential points for measuring Higgs spin and parity in this intermediate
mass range. The analysis runs parallel in all elements to the same task in Higgs-strahlung
at e+e− colliders – just requiring the crossing of the virtual Z-boson line from the initial to
the final state.

Below the threshold of two real Z bosons, the Higgs particle can decay into real and
virtual Z∗Z pairs. The partial decay width is given in the Standard Model by

Γ(H → Z∗Z) =
3G2

FM4
Z

16π3
δZMHR(x), (17)

where δZ = 7/12− 10 sin2 θW /9 + 40 sin4 θW /27, and the expression for R(x),

R(x) =
3(1− 8x + 20x2)√

4x− 1
cos−1

(
3x− 1

2x3/2

)
2Large QCD radiative corrections [14, 15] to Higgs production in gluon fusion are built up in the infrared

gluon region and they do not affect strongly the state of spin.
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−1− x

2x
(2− 13x + 47x2)− 3

2
(1− 6x + 4x2) log x (18)

with x = M2
Z/M2

H [4]. The invariant mass (M∗) spectrum of the off–shell Z boson is maximal
close to the kinematical limit corresponding to zero momentum of the off– and on–shell Z
bosons in the final state:

dΓH

dM2
∗

=
3G2

F M4
ZδZ

16π3MH

12M2
∗M

2
Z + M4

Hβ2

(M2
∗ −M2

Z)2 + M2
ZΓ2

Z

β (19)

where β is the Z∗/Z three-momentum in the H rest frame, in units of the Higgs particle
mass MH , i.e. β2 = [1 − (MZ + M∗)

2/M2
H ][1 − (MZ − M∗)

2/M2
H ]. The invariant mass

spectrum decreases linearly with β and therefore steeply with the invariant mass just below
the threshold:

dΓH

dM2
∗
∼ β ∼

√
(MH −MZ)2 −M 2

∗ (20)

This steep decrease is characteristic of the decay of a scalar particle into two vector bosons
with only two exceptions as discussed below.

The second characteristic is the angular distributions of the off/on-shell Z bosons in the
final state [4]. In the same notation as before,

dΓH

d cos θ1d cos θ2
∼ sin2 θ1 sin2 θ2 (21)

+
1

2γ2
1γ

2
2(1 + β1β2)2

[
(1 + cos2 θ1)(1 + cos2 θ2) + 4 η1η2 cos θ1 cos θ2

]

and

dΓH

dϕ
∼ 1− η1η2

1

2

(
3π

4

)2 γ1γ2(1 + β1β2)

γ2
1γ

2
2(1 + β1β2)2 + 2

cos ϕ +
1

2

1

γ2
1γ

2
2(1 + β1β2)2 + 2

cos 2ϕ (22)

where βi, γi are the velocities and Lorentz-boost factors of the off- and on-shell Z bosons,
respectively.

For a CP invariant theory the invariant mass and polar/azimuthal angular distributions
can formally be written in the same form as Eqs.(10) and (11), just modified by the virtual
Z∗ propagator:

dΓ

dM2
∗d cos θ1d cos θ2

and
dΓ

dM2
∗dϕ

∼ M2
∗

(M2
∗ −M2

Z)2 + M2
ZΓ2

Z

β × · · · (23)

The helicity amplitudes of the decay H → Z(∗)Z in the Standard Model are given by

T00 =
M2

H −M2
Z −M2

∗
2MZM∗

, T11 = −1, T10 = T01 = T1,−1 = 0 (24)
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The general helicity amplitudes are restricted by the normality condition (8), but not by the
Bose symmetry relation anymore.

The leading β dependence of the helicity amplitudes can be determined by counting the
number of momenta in each term of the tensor Tµνβ1...βJ . Each momentum contracted with
the Z-boson polarization vector or the H polarization tensor will necessarily give zero or one
power of β. Furthermore, any momentum contracted with the lepton current will also give
rise to one power of β due to the transversality of the current. The overall β dependence of
the invariant mass spectrum can be derived from the squared β dependence of the helicity
amplitude multiplied by a single factor β from the phase space.

Odd normality:
For the same arguments as before, the states of odd normality J P = 0−, 1+, 2−, . . . , can
be excluded if a non-zero ∼ sin2 θ1 sin2 θ2 correlation has been established experimentally.
Equivalently, the high power suppression of the virtual mass distributions near the threshold
rules out all spin ≥ 2 states; the state J = 1 can be eliminated by non-observation of
∼ (1 + cos2 θ1) sin2 θ2 and sin2 θ1 (1 + cos2 θ2) correlations.

Even normality:
Below the threshold of two real Z bosons, the states of even normality J P = 1−, 2+, 3− . . . .
can be excluded by measuring the threshold behaviour of the invariant mass spectrum and
the angular correlations.

Spin 1: Every term in Tµνβ must involve at least one power of momentum so that every
helicity amplitude vanishes near threshold linearly in β. As a result, the invariant mass
spectrum decreases ∼ β3, distinct from the Standard Model.

The size of the effect is illustrated in Fig.3 for a standard sample of events at LHC for a
Higgs mass MH = 150GeV, cf. Ref.[10], where the maximal event rate in the intermediate
mass range for Z∗Z decays is expected. Standard cuts applied by the LHC experiments have
only little effect on the distributions. In particular, we have performed a Monte Carlo study
which has demonstrated that the rapidity and transverse momentum cuts typically applied
at the LHC do not lead to a systematic depletion of the large M? region that is crucial for
spin measurements by the present method.

The figure clearly illustrates the suppression of the invariant mass distributions near
threshold for higher spin states in stark contrast to the spin–0 case of the Standard Model.

Spin 2: The general spin–2 tensor contains a term with no momentum dependence,

T µνβ1β2 ∼ gµβ1gνβ2 + gµβ2gνβ1 (25)

resulting in helicity amplitudes which do not vanish at threshold. This term however con-
tributes to the helicity amplitudes T10 and T01, leading to non-trivial (1+cos2 θ1) sin2 θ2 and
sin2 θ1(1 + cos2 θ2) correlations which are absent in the Standard Model. Therefore, if the
invariant mass spectrum decreases linearly and if these polar–angle correlations are not ob-
served experimentally, the spin–2 assignment to the state is ruled out. Without this peculiar
term in the spin-2 case, the spectrum falls off ∼ β5 near threshold.

Spin ≥ 3: Above spin–2 the number of independent helicity amplitudes does not increase
any more [11] and the most general spin-J tensor Tµνβ1...βJ is a direct product of a tensor

8



M* (GeV)

N
o.

 o
f E

ve
nt

s

SM

H → Z*Z → (f1f
–

1)(f2f
–

2)
MH = 150 GeV

Spin 1
Spin 2

0

5

10

15

20

25

30

30 35 40 45 50 55

Figure 3: The threshold behaviour of the differential distribution dΓ/dM∗ for the Standard
Model and two possible examples of spin-1 [b1 = 1/MH , b2 = 1/M3

H , b3 = 1/MH and
b4 = 1/MH] and spin-2 [c1 = 0, c2 = 1/M2

H , c3 = 1/M2
H , c4 = 1/M2

H and c5 = 1/M4
H ] even

normality bosons, with a Higgs boson mass of 150 GeV. The histogram for the Standard Model
shows the expected result from 203 signal events corresponding to an integrated luminosity of∫ L dt = 300 fb−1 at LHC [with efficiencies and cuts included according to the experimental
simulation Ref.[10]]. The curves show the exact theoretical dependences for such scenarios,
appropriately normalised.

T
(2)
µνβiβj

isomorphic with the spin-2 tensor and a symmetric tensor built up by the momentum

vectors kβk = (k1 − k2)
βk as required by the properties of the spin–J wave-function εβ1...βJ .

Contracted with the wave–function, the extra J − 2 momenta give rise to a leading power
βJ−2 in the helicity amplitudes. The invariant mass spectrum therefore decreases near
threshold ∼ β2J−3, i.e. with a power ≥ 3, in contrast to the single power of the Standard
Model.
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4 Conclusions

The analyses described above can be summarized in a few characteristic points which cover
the essential conclusions.

Above the threshold for two real Z bosons, H → ZZ, any odd–J state can be ruled out
by observing non–zero ∼ sin2 θ1 sin2 θ2 correlations. However, even–J states ≥ 2 may mimic
the spin–0 case. Exclusion of these even–J states requires the measurement of angular
correlations of the Z bosons with the initial state. It has been proven that the processes
gg, γγ → H → ZZ are suitable for this purpose; the angular distributions are an-isotropic
for all spin states except spin–0.

Below the threshold for two real bosons, H → Z∗Z, the key is the threshold behaviour
of the invariant mass spectrum which is predicted to be linear in the β for the J P = 0+

Higgs boson within the Standard Model. All other J P assignments can be ruled out by
the observation of a linear decrease near the kinematical limit, if supplemented by angular
correlations in two exceptional cases, J P = 1+ and 2+, i.e. observation of the ∼ sin2 θ1 sin2 θ2

correlation but absence of the (1 + cos2 θ1) sin2 θ2 correlation (and sin2 θ1(1 + cos2 θ2)).

The rules can be supplemented by observations specific to two cases. By observing non–
zero Hγγ and Hgg couplings, the J = 1 assignment can elegantly be ruled out by Yang’s
theorem in particular, and for all odd spins in general [18].

The above formalism can be generalized easily to rule out mixed normality states with
spin ≥ 1. For a Higgs boson of mixed normality we cannot use Eq.(8) anymore to derive the
simple form of the differential decay width in Eqs.(10) and (11). In particular, the double
polar–angle distribution, Eq.(10), is modified to include linear terms proportional to cos θ1

or cos θ2, indicative of CP violation [2]. The analysis for identifying the spin of the Higgs
particle, however, proceeds exactly as before in the fixed normality case, since the most
general vertex will be the sum of the even and odd normality tensors.

5 Appendix

(a) In the Standard Model the general combined polar and azimuthal correlation is given
by the expression

dΓH

d cos θ1d cos θ2dϕ
∼ sin2 θ1 sin2 θ2 −

1

2γ2(1 + β2)
sin 2θ1 sin 2θ2 cos ϕ

+
1

2γ4(1 + β2)2

[
(1 + cos2 θ1)(1 + cos2 θ2) + sin2 θ1 sin2 θ2 cos 2ϕ

]

+ η1η2
2

γ2(1 + β2)

[
− sin θ1 sin θ2 cos ϕ +

1

γ2(1 + β2)
cos θ1 cos θ2

]
(26)
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(b) while in the general CP conserving case

dΓ

d cos θ1d cos θ2dϕ
∼ sin2 θ1 sin2 θ2 |T00|2 +

1

2
(1 + cos2 θ1)(1 + cos2 θ2)

[
|T11|2 + |T1,−1|2

]
+ (1 + cos2 θ1) sin2 θ2 |T10|2 + sin2 θ1 (1 + cos2 θ2) |T01|2

+ 2 η1η2 cos θ1 cos θ2

[
|T11|2 − |T1,−1|2

]

+ 2 sin θ1 sin θ2

[
cos θ1 cos θ2<e(T11T ∗00 − T10T ∗0,−1) + η1η2<e(T11T ∗00 + T10T ∗0,−1)

]
cos ϕ

− 2 sin θ1 sin θ2

[
η2 cos θ1=m(T11T ∗00 + T10T ∗0,−1) + η1 cos θ2=m(T11T ∗00 − T10T ∗0,−1)

]
sin ϕ

+
1

2
sin2 θ1 sin2 θ2<e(T11T ∗−1,−1) cos 2ϕ (27)

using the same notation as before.
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J P HZ∗Z Coupling Helicity Amplitudes Threshold

Even Normality nH = +

T00=(2a1(M2
H−M2∗−M2

Z)+a2M4
Hβ2)/(4M∗MZ) 1

0+
a1 gµν+a2 pµpν

T11=−a1 1

T00=β [−2b1(M2
H−M2∗−M2

Z)−b2(M2
H−M2

Z+M2∗ )

+b3(M2
H−M2∗+M2

Z)−b4M4
Hβ2]MH/(4 M∗MZ)

β

1−
b1gµνkβ+b2gµβpν

T01=β b3M2
H/(2M∗) β

+b3gνβpµ+b4pµpνkβ

T10=−β b2M2
H/(2MZ ) β

T11=β b1MH β

T00={−c1 (M4
H−(M2

Z−M2∗ )2)/M2
H

c1 (gµβ1gνβ2+gµβ2gνβ1 ) +M2
Hβ2[c2 (M2

H−M2
Z−M2∗ )+c3 (M2

H−M2
Z+M2∗ ) 1

+c2 gµν kβ1kβ2 −c4 (M2
H−M2∗+M2

Z) ]+ 1
2
c5 M6

Hβ4}/(
√

6MZM∗)

2+
+c3 (gµβ1kβ2+gµβ2kβ1) pν T01=(−c1(M2

H−M2
Z+M2∗ )−c4 M4

Hβ2)/(
√

2M∗MH) 1

+c4 (gνβ1kβ2+gνβ2kβ1) pµ T10=(−c1(M2
H−M2∗+M2

Z)+c3 M4
Hβ2)/(

√
2MZMH) 1

+c5 pµpνkβ1kβ2 T11=−
√

2/3 (c1+c2M2
Hβ2) 1

T1,−1=−2 c1 1

Odd Normality nH = −
T00=0

0− a1 εµνρσpρkσ
T11=i β M2

H a1 β

T00=0

b1 εµνβρpρ T01=i (b1 (M2
Z−M2

H−M2∗ )+b2 (M2
H−M2

Z−3M2∗ )

+b3 M4
Hβ2)/(2M∗)

1

1+ +b2 εµνβρkρ

T10=i (b1 (M2∗−M2
H−M2

Z)−b2 (M2
H−M2∗−3M2

Z)+b3 (εµβρσpν

+b3 M4
Hβ2)/(2MZ )

1
+ ενβρσpµ) pρkσ

T11=i (−b1 M2
H+b2 (M2

Z−M2∗ ))/MH 1

T00=0
c1 εµνβ1ρpρkβ2

T01=i β (c1 (M2
H+M2∗−M2

Z)−c2 (M2
H−M2

Z−3M2∗ )
+c2 εµνβ1ρkρkβ2

−c3M4
Hβ2)MH/(

√
2M∗)

β

2−
+c3 (εµβ1ρσpν

T10=i β (c1 (M2
H+M2

Z−M2∗ )+c2 (M2
H−M2∗−3M2

Z )
+ ενβ1ρσpµ) kβ2pρkσ

−c3M4
Hβ2)MH/(

√
2MZ)

β

+c4 εµνρσpρkσkβ1kβ2

T11=i β 2
√

2/3 (c1 M2
H+c2 (M2∗−M2

Z)+c4 M4
Hβ2) β

+β1↔β2
T1,−1=0

Table 1: The most general tensor couplings of the HZ∗Z vertex and the corresponding
helicity amplitudes for Higgs bosons of spin ≤ 2. Here p = k1 + k2 and k = k1 − k2, where
k1 and k2 are the 4-momenta of the Z∗ and the Z bosons respectively. For spin ≥ 3, the
helicity amplitudes rise ∼ βJ−2 and ∼ βJ−1 for even and odd normalities respectively.
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