3,544 research outputs found

    Comment on "Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains"

    Full text link
    Dukelsky, Mart\'in-Delgado, Nishino and Sierra (Europhys. Lett., 43, 457 (1998) - hereafter referred to as DMNS) investigated the matrix product method (MPM), comparing it with the infinite-size density matrix renormalization group (DMRG). For equivalent basis size, the MPM produces an improved variational energy over that produced by DMRG and, unlike DMRG, produces a translationally-invariant wavefunction. The DMRG results presented were significantly worse than the MPM, caused by a shallow bound state appearing at the join of the two DMRG blocks. They also suggested that the DMRG results can be improved by using an alternate superblock construction [B][B][B] \bullet [B] for the last few steps of the calculation. In this comment, we show that the DMRG results presented by DMNS are in error and the artificial bound state produced by the standard superblock configuration is very small even for m=2m=2 states kept. In addition, we calculate explicitly the energy and wavefunction for the [B][B][B] \bullet [B] superblock structure and verify that the energy coincides with that of the MPM, as conjectured by S. Ostlund and S. Rommer (Phys. Rev. Lett., 75, 3537 (1995)).Comment: 2 pages, 1 eps figure included. eps.cls include

    Systematic errors in Gaussian Quantum Monte Carlo and a systematic study of the symmetry projection method

    Get PDF
    Gaussian Quantum Monte Carlo (GQMC) is a stochastic phase space method for fermions with positive weights. In the example of the Hubbard model close to half filling it fails to reproduce all the symmetries of the ground state leading to systematic errors at low temperatures. In a previous work [Phys. Rev. B {\bf 72}, 224518 (2005)] we proposed to restore the broken symmetries by projecting the density matrix obtained from the simulation onto the ground state symmetry sector. For ground state properties, the accuracy of this method depends on a {\it large overlap} between the GQMC and exact density matrices. Thus, the method is not rigorously exact. We present the limits of the approach by a systematic study of the method for 2 and 3 leg Hubbard ladders for different fillings and on-site repulsion strengths. We show several indications that the systematic errors stem from non-vanishing boundary terms in the partial integration step in the derivation of the Fokker-Planck equation. Checking for spiking trajectories and slow decaying probability distributions provides an important test of the reliability of the results. Possible solutions to avoid boundary terms are discussed. Furthermore we compare results obtained from two different sampling methods: Reconfiguration of walkers and the Metropolis algorithm.Comment: 11 pages, 14 figures, revised version, new titl

    Systematic errors in Gaussian Quantum Monte Carlo and a systematic study of the symmetry projection method

    Get PDF
    Gaussian Quantum Monte Carlo (GQMC) is a stochastic phase space method for fermions with positive weights. In the example of the Hubbard model close to half filling it fails to reproduce all the symmetries of the ground state leading to systematic errors at low temperatures. In a previous work [Phys. Rev. B {\bf 72}, 224518 (2005)] we proposed to restore the broken symmetries by projecting the density matrix obtained from the simulation onto the ground state symmetry sector. For ground state properties, the accuracy of this method depends on a {\it large overlap} between the GQMC and exact density matrices. Thus, the method is not rigorously exact. We present the limits of the approach by a systematic study of the method for 2 and 3 leg Hubbard ladders for different fillings and on-site repulsion strengths. We show several indications that the systematic errors stem from non-vanishing boundary terms in the partial integration step in the derivation of the Fokker-Planck equation. Checking for spiking trajectories and slow decaying probability distributions provides an important test of the reliability of the results. Possible solutions to avoid boundary terms are discussed. Furthermore we compare results obtained from two different sampling methods: Reconfiguration of walkers and the Metropolis algorithm.Comment: 11 pages, 14 figures, revised version, new titl

    Strongly interacting bosons on a three-leg ladder in the presence of a homogeneous flux

    Get PDF
    We perform a density-matrix renormalization-group study of strongly interacting bosons on a three-leg ladder in the presence of a homogeneous flux. Focusing on one-third filling, we explore the phase diagram in dependence of the magnetic flux and the inter-leg tunneling strength. We find several phases including a Meissner phase, vortex liquids, a vortex lattice, as well as a staggered-current phase. Moreover, there are regions where the chiral current reverses its direction, both in the Meissner and in the staggered-current phase. While the reversal in the latter case can be ascribed to spontaneous breaking of translational invariance, in the first it stems from an effective flux increase in the rung direction. Interactions are a necessary ingredient to realize either type of chiral-current reversal

    A Survey of the Galactic Plane for 6.7-GHz Methanol Masers I: l = 325.0 - 335.0 ; b = -0.53 - 0.53

    Full text link
    We report the results of the first complete survey of an area of the Galactic Plane for maser emission from the 6.7-GHz transition of methanol. The survey covers a 10.6-square-degree region of the Galactic Plane in the longitude range 325-335 degrees and latitude range -0.53-0.53 degrees. The survey is sensitive to masers with a peak flux density greater than approximately 2.6 Jy. The weakest maser detected has a peak flux density of 2.3 Jy and the strongest a peak flux density of 425 Jy. We detected a total of 50 distinct masers, 26 of which are new detections. We show that many 6.7-GHz methanol masers are not associated with IRAS sources, and that some are associated with sources that have colours differing from those of a typical ultra-compact HII region (UCHII). We estimate that the number of UCHII regions in the Galaxy is significantly more than suggested by IRAS-based estimates, possibly by more than a factor of two.Comment: 19 pages including 4 figures, using LaTeX formatted with mn.sty, accepted for publication in MNRA

    Minimally Entangled Typical Thermal State Algorithms

    Full text link
    We discuss a method based on sampling minimally entangled typical thermal states (METTS) that can simulate finite temperature quantum systems with a computational cost comparable to ground state DMRG. Detailed implementations of each step of the method are presented, along with efficient algorithms for working with matrix product states and matrix product operators. We furthermore explore how properties of METTS can reveal characteristic order and excitations of systems and discuss why METTS form an efficient basis for sampling. Finally, we explore the extent to which the average entanglement of a METTS ensemble is minimal.Comment: 18 pages, 14 figure

    Magnetism in the dilute Kondo lattice model

    Get PDF
    The one dimensional dilute Kondo lattice model is investigated by means of bosonization for different dilution patterns of the array of impurity spins. The physical picture is very different if a commensurate or incommensurate doping of the impurity spins is considered. For the commensurate case, the obtained phase diagram is verified using a non-Abelian density-matrix renormalization-group algorithm. The paramagnetic phase widens at the expense of the ferromagnetic phase as the ff-spins are diluted. For the incommensurate case, antiferromagnetism is found at low doping, which distinguishes the dilute Kondo lattice model from the standard Kondo lattice model.Comment: 11 pages, 2 figure
    corecore