2,559 research outputs found

    Characterisation and representation of non-dissipative electromagnetic medium with a double light cone

    Full text link
    We study Maxwell's equations on a 4-manifold N with a medium that is non-dissipative and has a linear and pointwise response. In this setting, the medium can be represented by a suitable (2,2)-tensor on the 4-manifold N. Moreover, in each cotangent space on N, the medium defines a Fresnel surface. Essentially, the Fresnel surface is a tensorial analogue of the dispersion equation that describes the response of the medium for signals in the geometric optics limit. For example, in isotropic medium the Fresnel surface is at each point a Lorentz light cone. In a recent paper, I. Lindell, A. Favaro and L. Bergamin introduced a condition that constrains the polarisation for plane waves. In this paper we show (under suitable assumptions) that a slight strengthening of this condition gives a pointwise characterisation of all medium tensors for which the Fresnel surface is the union of two distinct Lorentz null cones. This is for example the behaviour of uniaxial medium like calcite. Moreover, using the representation formulas from Lindell et al. we obtain a closed form representation formula that pointwise parameterises all medium tensors for which the Fresnel surface is the union of two distinct Lorentz null cones. Both the characterisation and the representation formula are tensorial and do not depend on local coordinates

    Drifting instabilities of cavity solitons in vertical cavity surface-emitting lasers with frequency selective feedback

    Get PDF
    In this paper we study the formation and dynamics of self-propelled cavity solitons (CSs) in a model for vertical cavity surface-emitting lasers (VCSELs) subjected to external frequency selective feedback (FSF), and build their bifurcation diagram for the case where carrier dynamics is eliminated. For low pump currents, we find that they emerge from the modulational instability point of the trivial solution, where traveling waves with a critical wavenumber are formed. For large currents, the branch of self-propelled solitons merges with the branch of resting solitons via a pitchfork bifurcation. We also show that a feedback phase variation of 2\pi can transform a CS (whether resting or moving) into a different one associated to an adjacent longitudinal external cavity mode. Finally, we investigate the influence of the carrier dynamics, relevant for VCSELs. We find and analyze qualitative changes in the stability properties of resting CSs when increasing the carrier relaxation time. In addition to a drifting instability of resting CSs, a new kind of instability appears for certain ranges of carrier lifetime, leading to a swinging motion of the CS center position. Furthermore, for carrier relaxation times typical of VCSELs the system can display multistability of CSs.Comment: 11 pages, 12 figure

    A survey on structured deformations

    Get PDF
    In this work we briefly describe the theory of (first-order) structured deformations of continua as well as the variational problems arising from this theory.

    Bayesian stochastic blockmodeling

    Full text link
    This chapter provides a self-contained introduction to the use of Bayesian inference to extract large-scale modular structures from network data, based on the stochastic blockmodel (SBM), as well as its degree-corrected and overlapping generalizations. We focus on nonparametric formulations that allow their inference in a manner that prevents overfitting, and enables model selection. We discuss aspects of the choice of priors, in particular how to avoid underfitting via increased Bayesian hierarchies, and we contrast the task of sampling network partitions from the posterior distribution with finding the single point estimate that maximizes it, while describing efficient algorithms to perform either one. We also show how inferring the SBM can be used to predict missing and spurious links, and shed light on the fundamental limitations of the detectability of modular structures in networks.Comment: 44 pages, 16 figures. Code is freely available as part of graph-tool at https://graph-tool.skewed.de . See also the HOWTO at https://graph-tool.skewed.de/static/doc/demos/inference/inference.htm
    corecore