3,412 research outputs found

    Non-equilibrium dynamics of an active colloidal "chucker"

    Full text link
    We report Monte Carlo simulations of the dynamics of a "chucker": a colloidal particle which emits smaller solute particles from its surface, isotropically and at a constant rate k_c. We find that the diffusion constant of the chucker increases for small k_c, as recently predicted theoretically. At large k_c the chucker diffuses more slowly due to crowding effects. We compare our simulation results to those of a "point particle" Langevin dynamics scheme in which the solute concentration field is calculated analytically, and in which hydrodynamic effects can be included albeit in an approximate way. By simulating the dragging of a chucker, we obtain an estimate of its apparent mobility coefficient which violates the fluctuation-dissipation theorem. We also characterise the probability density profile for a chucker which sediments onto a surface which either repels or absorbs the solute particles, and find that the steady state distributions are very different in the two cases. Our simulations are inspired by the biological example of exopolysaccharide-producing bacteria, as well as by recent experimental, simulation and theoretical work on phoretic colloidal "swimmers".Comment: re-submission after referee's comment

    Ferroelectric properties of charge-ordered alpha-(BEDT-TTF)2I3

    Get PDF
    A detailed investigation of the out-of-plane electrical properties of charge-ordered alpha-(BEDT-TTF)2I3 provides clear evidence for ferroelectricity. Similar to multiferroic alpha-(BEDT-TTF)2Cu[N(CN)2]Cl, the polar order in this material is ascribed to the occurrence of bond- and site-centered charge order. Dielectric response typical for relaxor ferroelectricity is found deep in the charge-ordered state. We suggest an explanation in terms of the existence of polar and nonpolar stacks of the organic molecules in this material, preventing long-range ferroelectricity. The results are discussed in relation to the formation or absence of electronic polar order in related charge-transfer salts.Comment: 8 pages, 4 figures. Revised version as accepted for publication in Phys. Rev.

    How Damage Diversification Can Reduce Systemic Risk

    Full text link
    We consider the problem of risk diversification in complex networks. Nodes represent e.g. financial actors, whereas weighted links represent e.g. financial obligations (credits/debts). Each node has a risk to fail because of losses resulting from defaulting neighbors, which may lead to large failure cascades. Classical risk diversification strategies usually neglect network effects and therefore suggest that risk can be reduced if possible losses (i.e., exposures) are split among many neighbors (exposure diversification, ED). But from a complex networks perspective diversification implies higher connectivity of the system as a whole which can also lead to increasing failure risk of a node. To cope with this, we propose a different strategy (damage diversification, DD), i.e. the diversification of losses that are imposed on neighboring nodes as opposed to losses incurred by the node itself. Here, we quantify the potential of DD to reduce systemic risk in comparison to ED. For this, we develop a branching process approximation that we generalize to weighted networks with (almost) arbitrary degree and weight distributions. This allows us to identify systemically relevant nodes in a network even if their directed weights differ strongly. On the macro level, we provide an analytical expression for the average cascade size, to quantify systemic risk. Furthermore, on the meso level we calculate failure probabilities of nodes conditional on their system relevance

    The Molecular Line Opacity of MgH in Cool Stellar Atmospheres

    Full text link
    A new, complete, theoretical rotational and vibrational line list for the A-X electronic transition in MgH is presented. The list includes transition energies and oscillator strengths for all possible allowed transitions and was computed using the best available theoretical potential energies and dipole transition moment function with the former adjusted to account for experimental data. The A-X line list, as well as new line lists for the B'-X and the X-X (pure rovibrational) transitions, were included in comprehensive stellar atmosphere models for M, L, and T dwarfs and solar-type stars. The resulting spectra, when compared to models lacking MgH, show that MgH provides significant opacity in the visible between 4400 and 5600 Angstrom. Further, comparison of the spectra obtained with the current line list to spectra obtained using the line list constructed by Kurucz (1993) show that the Kurucz list significantly overestimates the opacity due to MgH particularly for the bands near 5150 and 4800 Angstrom with the discrepancy increasing with decreasing effective temperature.Comment: 10 pages, 4 figures, 3 table

    An Agent-Based Model of Collective Emotions in Online Communities

    Full text link
    We develop a agent-based framework to model the emergence of collective emotions, which is applied to online communities. Agents individual emotions are described by their valence and arousal. Using the concept of Brownian agents, these variables change according to a stochastic dynamics, which also considers the feedback from online communication. Agents generate emotional information, which is stored and distributed in a field modeling the online medium. This field affects the emotional states of agents in a non-linear manner. We derive conditions for the emergence of collective emotions, observable in a bimodal valence distribution. Dependent on a saturated or a superlinear feedback between the information field and the agent's arousal, we further identify scenarios where collective emotions only appear once or in a repeated manner. The analytical results are illustrated by agent-based computer simulations. Our framework provides testable hypotheses about the emergence of collective emotions, which can be verified by data from online communities.Comment: European Physical Journal B (in press), version 2 with extended introduction, clarification

    Critical level spacing distribution of two-dimensional disordered systems with spin-orbit coupling

    Full text link
    The energy level statistics of 2D electrons with spin-orbit scattering are considered near the disorder induced metal-insulator transition. Using the Ando model, the nearest-level-spacing distribution is calculated numerically at the critical point. It is shown that the critical spacing distribution is size independent and has a Poisson-like decay at large spacings as distinct from the Gaussian asymptotic form obtained by the random-matrix theory.Comment: 7 pages REVTeX, 2 uuencoded, gzipped figures; J. Phys. Condensed Matter, in prin

    Critical conductance of two-dimensional chiral systems with random magnetic flux

    Full text link
    The zero temperature transport properties of two-dimensional lattice systems with static random magnetic flux per plaquette and zero mean are investigated numerically. We study the two-terminal conductance and its dependence on energy, sample size, and magnetic flux strength. The influence of boundary conditions and of the oddness of the number of sites in the transverse direction is also studied. We confirm the existence of a critical chiral state in the middle of the energy band and calculate the critical exponent nu=0.35 +/- 0.03 for the divergence of the localization length. The sample averaged scale independent critical conductance _c turns out to be a function of the amplitude of the flux fluctuations whereas the variance of the respective conductance distributions appears to be universal. All electronic states outside of the band center are found to be localized.Comment: to appear in Phys. Rev.

    The Influence of Dust Formation Modelling on Na I and K I Line Profiles in Substellar Atmospheres

    Full text link
    We aim to understand the correlation between cloud formation and alkali line formation in substellar atmospheres.We perform line profile calculations for Na I and K I based on the coupling of our kinetic model for the formation and composition of dust grains with 1D radiative transfer calculations in atmosphere models for brown dwarfs and giant gas planets. The Na I and K I line profiles sensibly depend on the way clouds are treated in substellar atmosphere simulations. The kinetic dust formation model results in the highest pseudo-continuum compared to the limiting cases.Comment: 5 pages, Accepted for publication in MNRA
    corecore