3,412 research outputs found
Non-equilibrium dynamics of an active colloidal "chucker"
We report Monte Carlo simulations of the dynamics of a "chucker": a colloidal
particle which emits smaller solute particles from its surface, isotropically
and at a constant rate k_c. We find that the diffusion constant of the chucker
increases for small k_c, as recently predicted theoretically. At large k_c the
chucker diffuses more slowly due to crowding effects. We compare our simulation
results to those of a "point particle" Langevin dynamics scheme in which the
solute concentration field is calculated analytically, and in which
hydrodynamic effects can be included albeit in an approximate way. By
simulating the dragging of a chucker, we obtain an estimate of its apparent
mobility coefficient which violates the fluctuation-dissipation theorem. We
also characterise the probability density profile for a chucker which sediments
onto a surface which either repels or absorbs the solute particles, and find
that the steady state distributions are very different in the two cases. Our
simulations are inspired by the biological example of
exopolysaccharide-producing bacteria, as well as by recent experimental,
simulation and theoretical work on phoretic colloidal "swimmers".Comment: re-submission after referee's comment
Ferroelectric properties of charge-ordered alpha-(BEDT-TTF)2I3
A detailed investigation of the out-of-plane electrical properties of
charge-ordered alpha-(BEDT-TTF)2I3 provides clear evidence for
ferroelectricity. Similar to multiferroic alpha-(BEDT-TTF)2Cu[N(CN)2]Cl, the
polar order in this material is ascribed to the occurrence of bond- and
site-centered charge order. Dielectric response typical for relaxor
ferroelectricity is found deep in the charge-ordered state. We suggest an
explanation in terms of the existence of polar and nonpolar stacks of the
organic molecules in this material, preventing long-range ferroelectricity. The
results are discussed in relation to the formation or absence of electronic
polar order in related charge-transfer salts.Comment: 8 pages, 4 figures. Revised version as accepted for publication in
Phys. Rev.
How Damage Diversification Can Reduce Systemic Risk
We consider the problem of risk diversification in complex networks. Nodes
represent e.g. financial actors, whereas weighted links represent e.g.
financial obligations (credits/debts). Each node has a risk to fail because of
losses resulting from defaulting neighbors, which may lead to large failure
cascades. Classical risk diversification strategies usually neglect network
effects and therefore suggest that risk can be reduced if possible losses
(i.e., exposures) are split among many neighbors (exposure diversification,
ED). But from a complex networks perspective diversification implies higher
connectivity of the system as a whole which can also lead to increasing failure
risk of a node. To cope with this, we propose a different strategy (damage
diversification, DD), i.e. the diversification of losses that are imposed on
neighboring nodes as opposed to losses incurred by the node itself. Here, we
quantify the potential of DD to reduce systemic risk in comparison to ED. For
this, we develop a branching process approximation that we generalize to
weighted networks with (almost) arbitrary degree and weight distributions. This
allows us to identify systemically relevant nodes in a network even if their
directed weights differ strongly. On the macro level, we provide an analytical
expression for the average cascade size, to quantify systemic risk.
Furthermore, on the meso level we calculate failure probabilities of nodes
conditional on their system relevance
The Molecular Line Opacity of MgH in Cool Stellar Atmospheres
A new, complete, theoretical rotational and vibrational line list for the A-X
electronic transition in MgH is presented. The list includes transition
energies and oscillator strengths for all possible allowed transitions and was
computed using the best available theoretical potential energies and dipole
transition moment function with the former adjusted to account for experimental
data. The A-X line list, as well as new line lists for the B'-X and the X-X
(pure rovibrational) transitions, were included in comprehensive stellar
atmosphere models for M, L, and T dwarfs and solar-type stars. The resulting
spectra, when compared to models lacking MgH, show that MgH provides
significant opacity in the visible between 4400 and 5600 Angstrom. Further,
comparison of the spectra obtained with the current line list to spectra
obtained using the line list constructed by Kurucz (1993) show that the Kurucz
list significantly overestimates the opacity due to MgH particularly for the
bands near 5150 and 4800 Angstrom with the discrepancy increasing with
decreasing effective temperature.Comment: 10 pages, 4 figures, 3 table
An Agent-Based Model of Collective Emotions in Online Communities
We develop a agent-based framework to model the emergence of collective
emotions, which is applied to online communities. Agents individual emotions
are described by their valence and arousal. Using the concept of Brownian
agents, these variables change according to a stochastic dynamics, which also
considers the feedback from online communication. Agents generate emotional
information, which is stored and distributed in a field modeling the online
medium. This field affects the emotional states of agents in a non-linear
manner. We derive conditions for the emergence of collective emotions,
observable in a bimodal valence distribution. Dependent on a saturated or a
superlinear feedback between the information field and the agent's arousal, we
further identify scenarios where collective emotions only appear once or in a
repeated manner. The analytical results are illustrated by agent-based computer
simulations. Our framework provides testable hypotheses about the emergence of
collective emotions, which can be verified by data from online communities.Comment: European Physical Journal B (in press), version 2 with extended
introduction, clarification
Critical level spacing distribution of two-dimensional disordered systems with spin-orbit coupling
The energy level statistics of 2D electrons with spin-orbit scattering are
considered near the disorder induced metal-insulator transition. Using the Ando
model, the nearest-level-spacing distribution is calculated numerically at the
critical point. It is shown that the critical spacing distribution is size
independent and has a Poisson-like decay at large spacings as distinct from the
Gaussian asymptotic form obtained by the random-matrix theory.Comment: 7 pages REVTeX, 2 uuencoded, gzipped figures; J. Phys. Condensed
Matter, in prin
Critical conductance of two-dimensional chiral systems with random magnetic flux
The zero temperature transport properties of two-dimensional lattice systems
with static random magnetic flux per plaquette and zero mean are investigated
numerically. We study the two-terminal conductance and its dependence on
energy, sample size, and magnetic flux strength. The influence of boundary
conditions and of the oddness of the number of sites in the transverse
direction is also studied. We confirm the existence of a critical chiral state
in the middle of the energy band and calculate the critical exponent nu=0.35
+/- 0.03 for the divergence of the localization length. The sample averaged
scale independent critical conductance _c turns out to be a function of the
amplitude of the flux fluctuations whereas the variance of the respective
conductance distributions appears to be universal. All electronic states
outside of the band center are found to be localized.Comment: to appear in Phys. Rev.
The Influence of Dust Formation Modelling on Na I and K I Line Profiles in Substellar Atmospheres
We aim to understand the correlation between cloud formation and alkali line
formation in substellar atmospheres.We perform line profile calculations for Na
I and K I based on the coupling of our kinetic model for the formation and
composition of dust grains with 1D radiative transfer calculations in
atmosphere models for brown dwarfs and giant gas planets. The Na I and K I line
profiles sensibly depend on the way clouds are treated in substellar atmosphere
simulations. The kinetic dust formation model results in the highest
pseudo-continuum compared to the limiting cases.Comment: 5 pages, Accepted for publication in MNRA
- …