5,418 research outputs found

    Measurement of intracellular concentration of fluorescently-labeled targets in living cells

    Get PDF
    Estimations of intracellular concentrations of fluorescently-labeled molecules within living cells are very important for guidance of biological experiments and interpretation of their results. Here we propose a simple and universal approach for such estimations. The approach is based upon common knowledge that the dye fluorescence is directly proportional to its quantum yield and the number of its molecules and that a coefficient of proportionality is determined by spectral properties of the dye and optical equipment used to record fluorescent signals. If two fluorescent dyes are present in the same volume, then a ratio of their concentrations is equal to a ratio of their fluorescence multiplied by some dye- and equipment-dependent coefficient. Thus, if the coefficient and concentration of one dye is known then the concentration of another dye can be determined. Here we have demonstrated how to calculate this coefficient (called a ratio factor) and how to use it for concentration measurements of fluorescently tagged molecules. As an example of how this approach can be used, we estimated a concentration of exogenously expressed neuronal Ca2+ sensor protein, hippocalcin, tagged by a fluorescent protein in a dendritic tree of rat hippocampal neurons loaded via a patch pipette with Alexa Fluor dye of known concentration. The new approach should allow performing a fast, inexpensive and reliable quantitative analysis of fluorescently-labeled targets in different parts of living cells

    Transverse Λ0\Lambda^0 polarization in inclusive quasi-real photoproduction at the current fragmentation

    Full text link
    It is shown that the recent HERMES data on the transverse Λ0\Lambda^0 polarization in the inclusive quasi-real photoproduction at xF>0x_F>0 can be accommodated by the strange quark scattering model. Relations with the quark recombination approach are discussed.Comment: 5 pages, 3 figures, accepted by Eur. Phys. J.

    Nuclear Polarization of Molecular Hydrogen Recombined on a Non-metallic Surface

    Full text link
    The nuclear polarization of H2\mathrm{H}_2 molecules formed by recombination of nuclear polarized H atoms on the surface of a storage cell initially coated with a silicon-based polymer has been measured by using the longitudinal double-spin asymmetry in deep-inelastic positron-proton scattering. The molecules are found to have a substantial nuclear polarization, which is evidence that initially polarized atoms retain their nuclear polarization when absorbed on this type of surfac
    corecore