2,894 research outputs found

    Modeling Star counts in the Monoceros stream and the Galactic anti-centre

    Full text link
    There is a continued debate as to the form of the outer disc of the Milky Way galaxy, which has important implications for its formation. Stars are known to exist at a galacto-centric distance of at least 20 kpc. However, there is much debate as to whether these stars can be explained as being part of the disc or whether another extra galactic structure, the so called Monoceros ring/stream, is required. To examine the outer disc of the Galaxy toward the anti-centre to determine whether the star counts can be explained by the thin and thick discs alone. Using Sloan star counts and extracting the late F and early G dwarfs it is possible to directly determine the density of stars out to a galacto-centric distance of about 25 kpc. These are then compared with a simple flared disc model. A flared disc model is shown to reproduce the counts along the line of sights examined, if the thick disc does not have a sharp cut off. The flare starts at a Galacto-centric radius of 16 kpc and has a scale length of 4.5+/-1.5 kpc. Whilst the interpretation of the counts in terms of a ring/stream cannot be definitely discounted, it does not appear to be necessary, at least along the lines of sight examined towards the anti centre.Comment: 11 pages, 4 figures, accepted to be published in A&

    AAOmega spectroscopy of 29 351 stars in fields centered on ten Galactic globular clusters

    Full text link
    Galactic globular clusters have been pivotal in our understanding of many astrophysical phenomena. Here we publish the extracted stellar parameters from a recent large spectroscopic survey of ten globular clusters. A brief review of the project is also presented. Stellar parameters have been extracted from individual stellar spectra using both a modified version of the Radial Velocity Experiment (RAVE) pipeline and a pipeline based on the parameter estimation method of RAVE. We publish here all parameters extracted from both pipelines. We calibrate the metallicity and convert this to [Fe/H] for each star and, furthermore, we compare the velocities and velocity dispersions of the Galactic stars in each field to the Besan\c{c}on Galaxy model. We find that the model does not correspond well with the data, indicating that the model is probably of little use for comparisons with pencil beam survey data such as this.Comment: 6 pages, 5 figures, 4 tables. Accepted for publication in A&A. Data described in tables will be available on CDS (at http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/530/A31) once publishe

    Methods for Investigating the UPR in Filamentous Fungi

    Get PDF
    Filamentous fungi have a high-capacity secretory system and are therefore widely exploited for the industrial production of native and heterologous proteins. However, in most cases, the yields of nonfungal proteins are significantly lower than those obtained for fungal proteins. One well-studied bottleneck appears to be the result of slow or aberrant folding of heterologous proteins in the ER during the early stages of secretion within the endoplasmic reticulum, leading to stress responses in the host, including the unfolded protein response (UPR). Most of the key elements constituting the signal transduction pathway of the UPR in Saccharomyces cerevisiae have been identified in filamentous fungi, including the central activation mechanism of the pathway, that is, the stress-induced splicing of an unconventional (nonspliceosomal) intron in orthologs of the HAC1 mRNA. This splicing event relieves a translational block in the HAC1 mRNA, allowing for the translation of the bZIP transcription factor Hac1p that regulates the expression of UPR target genes. The UPR is involved in regulating the folding, yield, and delivery of secretory proteins and that has consequences for fungal lifestyles, including virulence and biotechnology. The recent releases of genome sequences of several species of filamentous fungi and the availability of DNA arrays, GeneChips, and deep sequencing methodologies have provided an unprecedented resource for exploring expression profiles in response to secretion stresses. Furthermore, genome-wide investigation of translation profiles through polysome analyses is possible, and here, we outline methods for the use of such techniques with filamentous fungi and, principally, Aspergillus niger. We also describe methods for the batch and controlled cultivation of A. niger and for the replacement and study of its hacA gene, which provides either a UPR-deficient strain or a constitutively activated UPR strain for comparative analysis with its wild type. Although we focus on A. niger, the utility of the hacA-deletion strategy is also described for use in investigating the virulence of the plant pathogen Alternaria brassicicola

    Liquid-amplified zipping actuators for micro-air vehicles with transmission-free flapping

    Get PDF

    Mirror-Descent Methods in Mixed-Integer Convex Optimization

    Get PDF
    In this paper, we address the problem of minimizing a convex function f over a convex set, with the extra constraint that some variables must be integer. This problem, even when f is a piecewise linear function, is NP-hard. We study an algorithmic approach to this problem, postponing its hardness to the realization of an oracle. If this oracle can be realized in polynomial time, then the problem can be solved in polynomial time as well. For problems with two integer variables, we show that the oracle can be implemented efficiently, that is, in O(ln(B)) approximate minimizations of f over the continuous variables, where B is a known bound on the absolute value of the integer variables.Our algorithm can be adapted to find the second best point of a purely integer convex optimization problem in two dimensions, and more generally its k-th best point. This observation allows us to formulate a finite-time algorithm for mixed-integer convex optimization

    Major Substructure in the M31 Outer Halo: the South-West Cloud

    Full text link
    We undertake the first detailed analysis of the stellar population and spatial properties of a diffuse substructure in the outer halo of M31. The South-West Cloud lies at a projected distance of ~100 kpc from the centre of M31, and extends for at least ~50 kpc in projection. We use Pan-Andromeda Archaeological Survey photometry of red giant branch stars to determine a distance to the South-West Cloud of 793 +/- 45 kpc. The metallicity of the cloud is found to be [Fe/H] = -1.3 +/- 0.1. This is consistent with the coincident globular clusters PAndAS-7 and PAndAS-8, which have metallicities determined using an independent technique of [Fe/H] = -1.35 +/- 0.15. We measure a brightness for the Cloud of M_V = -12.1 mag; this is ~75 per cent of the luminosity implied by the luminosity-metallicity relation. Under the assumption that the South-West Cloud is the visible remnant of an accreted dwarf satellite, this suggests that the progenitor object was amongst M31's brightest dwarf galaxies prior to disruption.Comment: 13 pages, 9 figures, accepted for publication in MNRA

    RoboHeart:A Bi-Directional Zipping Actuator

    Get PDF
    corecore