44,508 research outputs found
Phonons in potassium doped graphene: the effects of electron-phonon interactions, dimensionality and ad-atom ordering
Graphene phonons are measured as a function of electron doping via the
addition of potassium adatoms. In the low doping regime, the in-plane carbon
G-peak hardens and narrows with increasing doping, analogous to the trend seen
in graphene doped via the field-effect. At high dopings, beyond those
accessible by the field-effect, the G-peak strongly softens and broadens. This
is interpreted as a dynamic, non-adiabatic renormalization of the phonon
self-energy. At dopings between the light and heavily doped regimes, we find a
robust inhomogeneous phase where the potassium coverage is segregated into
regions of high and low density. The phonon energies, linewidths and tunability
are remarkably similar for 1-4 layer graphene, but significantly different to
doped bulk graphite.Comment: Accepted in Phys. Rev. B as a Rapid Communication. 5 pages, 3
figures, revised text with additional dat
Tuning the Diversity of Open-Ended Responses from the Crowd
Crowdsourcing can solve problems that current fully automated systems cannot.
Its effectiveness depends on the reliability, accuracy, and speed of the crowd
workers that drive it. These objectives are frequently at odds with one
another. For instance, how much time should workers be given to discover and
propose new solutions versus deliberate over those currently proposed? How do
we determine if discovering a new answer is appropriate at all? And how do we
manage workers who lack the expertise or attention needed to provide useful
input to a given task? We present a mechanism that uses distinct payoffs for
three possible worker actions---propose,vote, or abstain---to provide workers
with the necessary incentives to guarantee an effective (or even optimal)
balance between searching for new answers, assessing those currently available,
and, when they have insufficient expertise or insight for the task at hand,
abstaining. We provide a novel game theoretic analysis for this mechanism and
test it experimentally on an image---labeling problem and show that it allows a
system to reliably control the balance betweendiscovering new answers and
converging to existing ones
Wood Duck Investigations W-118-R-4-5-6 Final Report
W-118-R-4-5-6 (Final Report); issued November 20, 1998; Study I: Aerial helicopter
surveys of breeding wood ducks in bottomland forest.Report issued on: November 20, 1998INHS Technical Report prepared for Illinois Department of Natural Resource
Do We See Eye to Eye? Moderators of Correspondence Between Student and Faculty Evaluations of Day-to-Day Teaching
Students and instructors show moderate levels of agreement about the quality of day-to-day teaching. In the present study, we replicated and extended this finding by asking how correspondence between student and instructor ratings is moderated by time of semester and student demographic variables. Participants included 137 students and 5 instructors. On 10 separate days, students and instructors rated teaching effectiveness and challenge level of the material. Multilevel modeling indicated that student and instructor ratings of teaching effectiveness converged overall, but more advanced students and Caucasian students converged more closely with instructors. Student and instructor ratings of challenge converged early but diverged later in the semester. These results extend our knowledge about the connection between student and faculty judgments of teaching
The Small Stellated Dodecahedron Code and Friends
We explore a distance-3 homological CSS quantum code, namely the small
stellated dodecahedron code, for dense storage of quantum information and we
compare its performance with the distance-3 surface code. The data and ancilla
qubits of the small stellated dodecahedron code can be located on the edges
resp. vertices of a small stellated dodecahedron, making this code suitable for
3D connectivity. This code encodes 8 logical qubits into 30 physical qubits
(plus 22 ancilla qubits for parity check measurements) as compared to 1 logical
qubit into 9 physical qubits (plus 8 ancilla qubits) for the surface code. We
develop fault-tolerant parity check circuits and a decoder for this code,
allowing us to numerically assess the circuit-based pseudo-threshold.Comment: 19 pages, 14 figures, comments welcome! v2 includes updates which
conforms with the journal versio
3-D SPH simulations of colliding winds in eta Carinae
We study colliding winds in the superluminous binary eta Carinae by
performing three-dimensional, Smoothed Particle Hydrodynamics (SPH)
simulations. For simplicity, we assume both winds to be isothermal. We also
assume that wind particles coast without any net external forces. We find that
the lower density, faster wind from the secondary carves out a spiral cavity in
the higher density, slower wind from the primary. Because of the
phase-dependent orbital motion, the cavity is very thin on the periastron side,
whereas it occupies a large volume on the apastron side. The model X-ray light
curve using the simulated density structure fits very well with the observed
light curve for a viewing angle of i=54 degrees and phi=36 degrees, where i is
the inclination angle and phi is the azimuth from apastron.Comment: 6 pages, 3 figures, To be published in Proceedings of IAU Symposium
250: Massive Stars as Cosmic Engines, held in Kauai, Hawaii, USA, Dec 2007,
edited by F. Bresolin, P.A. Crowther & J. Puls (Cambridge University Press
- …