5,171 research outputs found

    Pointwise convergence of vector-valued Fourier series

    Full text link
    We prove a vector-valued version of Carleson's theorem: Let Y=[X,H]_t be a complex interpolation space between a UMD space X and a Hilbert space H. For p\in(1,\infty) and f\in L^p(T;Y), the partial sums of the Fourier series of f converge to f pointwise almost everywhere. Apparently, all known examples of UMD spaces are of this intermediate form Y=[X,H]_t. In particular, we answer affirmatively a question of Rubio de Francia on the pointwise convergence of Fourier series of Schatten class valued functions.Comment: 26 page

    Cosmological Implications of the Fundamental Relations of X-ray Clusters

    Get PDF
    Based on the two-parameter family nature of X-ray clusters of galaxies obtained in a separate paper, we discuss the formation history of clusters and cosmological parameters of the universe. Utilizing the spherical collapse model of cluster formation, and assuming that the cluster X-ray core radius is proportional to the virial radius at the time of the cluster collapse, the observed relations among the density, radius, and temperature of clusters imply that cluster formation occurs in a wide range of redshift. The observed relations favor the low-density universe. Moreover, we find that the model of n1n\sim -1 is preferable.Comment: 7 pages, 4 figures. To be published in ApJ Letter

    Há alternativas ao uso dos transgênicos?

    Get PDF
    A existência ou não de alternativa ao uso de transgênicos capaz de satisfazer a demanda mundial por alimento e nutrientes é uma questão que permanece aberta à investigação científica.A importância dos transgênicos ainda não está bem fundamentada no conhecimento científico disponível,em parte porque as conquistas e o potencial da agroecologia não foram objeto de atenção científica suficiente

    A Test of the Collisional Dark Matter Hypothesis from Cluster Lensing

    Get PDF
    Spergel & Steinhardt proposed the possibility that the dark matter particles are self-interacting, as a solution to two discrepancies between the predictions of cold dark matter models and the observations: first, the observed dark matter distribution in some dwarf galaxies has large, constant-density cores, as opposed to the predicted central cusps; and second, small satellites of normal galaxies are much less abundant than predicted. The dark matter self-interaction would produce isothermal cores in halos, and would also expel the dark matter particles from dwarfs orbiting within large halos. However, another inevitable consequence of the model is that halos should become spherical once most particles have interacted. Here, I rule out this model by the fact that the innermost regions of dark matter halos in massive clusters of galaxies are elliptical, as shown by gravitational lensing and other observations. The absence of collisions in the lensing cores of massive clusters implies that any dark matter self-interaction is too weak to have affected the observed density profiles in the dark-matter dominated dwarf galaxies, or to have eased the destruction of dwarf satellites in galactic halos. If sxs_x is the cross section and mxm_x the mass of the dark matter particle, then s_x/m_x < 10^{-25.5} \cm^2/\gev.Comment: to appear in ApJ, January 1 200

    Characterizing the Cluster Lens Population

    Full text link
    We present a detailed investigation into which properties of CDM halos make them effective strong gravitational lenses. Strong lensing cross sections of 878 clusters from an N-body simulation are measured by ray tracing through 13,594 unique projections. We measure concentrations, axis ratios, orientations, and the amount of substructure of each cluster, and compare the lensing weighted distribution of each quantity to that of the cluster population as a whole. The concentrations of lensing clusters are on average 34% larger than the typical cluster in the Universe. Despite this bias, the anomalously high concentrations (c >14) recently measured by several groups, appear to be inconsistent with the concentration distribution in our simulations, which predict < 2% of lensing clusters should have concentrations this high. No correlation is found between lensing cross section and the amount of substructure. We introduce several types of simplified dark matter halos, and use them to isolate which properties of CDM clusters make them effective lenses. Projections of halo substructure onto small radii and the large scale mass distribution of clusters do not significantly influence cross sections. The abundance of giant arcs is primarily determined by the mass distribution within an average overdensity of ~ 10,000. A multiple lens plane ray tracing algorithm is used to show that projections of large scale structure increase the giant arc abundance by a modest amount <7%. We revisit the question of whether there is an excess of giant arcs behind high redshift clusters in the RCS survey and find that the number of high redshift (z > 0.6) lenses is in good agreement with LCDM, although our simulations predict more low redshift (z < 0.6) lenses than were observed. (abridged)Comment: 19 pages, 15 figures. Submitted to Ap

    The Variation of Gas Mass Distribution in Galaxy Clusters: Effects of Preheating and Shocks

    Full text link
    We investigate the origin of the variation of the gas mass fraction in the core of galaxy clusters, which was indicated by our work on the X-ray fundamental plane. The adopted model supposes that the gas distribution characterized by the slope parameter is related to the preheated temperature. Comparison with observations of relatively hot (~> 3 keV) and low redshift clusters suggests that the preheated temperature is about 0.5-2 keV, which is higher than expected from the conventional galactic wind model and possibly suggests the need for additional heating such as quasars or gravitational heating on the largest scales at high redshift. The dispersion of the preheated temperature may be attributed to the gravitational heating in subclusters. We calculate the central gas fraction of a cluster from the gas distribution, assuming that the global gas mass fraction is constant within a virial radius at the time of the cluster collapse. We find that the central gas density thus calculated is in good agreement with the observed one, which suggests that the variation of gas mass fraction in cluster cores appears to be explained by breaking the self-similarity in clusters due to preheated gas. We also find that this model does not change major conclusions on the fundamental plane and its cosmological implications obtained in previous papers, which strongly suggests that not only for the dark halo but also for the intracluster gas the core structure preserves information about the cluster formation.Comment: 17 pages, to be published in Ap

    Constraints on Cosmological Parameters from Future Galaxy Cluster Surveys

    Full text link
    We study the expected redshift evolution of galaxy cluster abundance between 0 < z < 3 in different cosmologies, including the effects of the cosmic equation of state parameter w=p/rho. Using the halo mass function obtained in recent large scale numerical simulations, we model the expected cluster yields in a 12 deg^2 Sunyaev-Zeldovich Effect (SZE) survey and a deep 10^4 deg^2 X-ray survey over a wide range of cosmological parameters. We quantify the statistical differences among cosmologies using both the total number and redshift distribution of clusters. Provided that the local cluster abundance is known to a few percent accuracy, we find only mild degeneracies between w and either Omega_m or h. As a result, both surveys will provide improved constraints on Omega_m and w. The Omega_m-w degeneracy from both surveys is complementary to those found either in studies of CMB anisotropies or of high-redshift Supernovae (SNe). As a result, combining these surveys together with either CMB or SNe studies can reduce the statistical uncertainty on both w and Omega_m to levels below what could be obtained by combining only the latter two data sets. Our results indicate a formal statistical uncertainty of about 3% (68% confidence) on both Omega_m and w when the SZE survey is combined with either the CMB or SN data; the large number of clusters in the X-ray survey further suppresses the degeneracy between w and both Omega_m and h. Systematics and internal evolution of cluster structure at the present pose uncertainties above these levels. We briefly discuss and quantify the relevant systematic errors. By focusing on clusters with measured temperatures in the X-ray survey, we reduce our sensitivity to systematics such as non-standard evolution of internal cluster structure.Comment: ApJ, revised version. Expanded discussion of systematics; Press-Schechter mass function replaced by fit from simulation

    Non-linear power spectra of dark and luminous matter in halo model of structure formation

    Full text link
    The late stages of large-scale structure evolution are treated semi-analytically within the framework of modified halo model. We suggest simple yet accurate approximation for relating the non-linear amplitude to linear one for spherical density perturbation. For halo concentration parameter, cc, a new computation technique is proposed, which eliminates the need of interim evaluation of the zcolz_{col}. Validity of the technique is proved for Λ\LambdaCDM and Λ\LambdaWDM cosmologies. Also, the parameters for Sheth-Tormen mass function are estimated. The modified and extended halo model is applied for determination of non-linear power spectrum of dark matter, as well as for galaxy power spectrum estimation. The semi-analytical techniques for dark matter power spectrum are verified by comparison with data from numerical simulations. Also, the predictions for the galaxy power spectra are confronted with 'observed' data from PSCz and SDSS galaxy catalogs, good accordance is found.Comment: 18 pages, 8 figures; major changes from the previous version; accepted for publivation in Phys. Rev.

    Spectroscopic Observations of Optically Selected Clusters of Galaxies from the Palomar Distant Cluster Survey

    Get PDF
    We have conducted a redshift survey of sixteen cluster candidates from the Palomar Distant Cluster Survey (PDCS) to determine both the density of PDCS clusters and the accuracy of the estimated redshifts presented in the PDCS catalog (Postman et. al. 1996). We find that the matched-filter redshift estimate presented in the PDCS has an error sigma_z = 0.06 in the redshift range 0.1 < z < 0.35 based on eight cluster candidates with three or more concordant galaxy redshifts. We measure the low redshift (0.1 < z < 0.35) space density of PDCS clusters to be 31.3^{+30.5}_{-17.1} * E-06 h^3 Mpc^-3 (68% confidence limits for a Poisson distribution) for Richness Class 1 systems. We find a tentative space density of 10.4^{+23.4}_{-8.4}* E-06 h^3 Mpc^-3 for Richness Class 2 clusters. These densities compare favorably with those found for the whole of the PDCS and support the finding that the space density of clusters in the PDCS is a factor of ~5 above that of clusters in the Abell catalog (Abell 1958; Abell, Corwin, and Olowin 1989). These new space density measurements were derived as independently as possible from the original PDCS analysis and therefore, demonstrate the robustness of the original work. Based on our survey, we conclude that the PDCS matched-filter algorithm is successful in detecting real clusters and in estimating their true redshifts in the redshift range we surveyed.Comment: 23 pages with 4 figures and 3 seperate tables. To be published in the November Issue of the Astronomical Journa
    corecore