9,747 research outputs found

    Second-Order Dynamics in the Collective Evolution of Coupled Maps and Automata

    Full text link
    We review recent numerical studies and the phenomenology of spatially synchronized collective states in many-body dynamical systems. These states exhibit thermodynamic noise superimposed on the collective, quasiperiodic order parameter evolution with typically one basic irrational frequency. We concentrate on the description of the global temporal properties in terms of second-order difference equations.Comment: 11 pages (plain TeX), 4 figures (PostScript), preprint OUTP-92-51

    Spontaneous creation of discrete breathers in Josephson arrays

    Full text link
    We report on the experimental generation of discrete breather states (intrinsic localized modes) in frustrated Josephson arrays. Our experiments indicate the formation of discrete breathers during the transition from the static to the dynamic (whirling) system state, induced by a uniform external current. Moreover, spatially extended resonant states, driven by a uniform current, are observed to evolve into localized breather states. Experiments were performed on single Josephson plaquettes as well as open-ended Josephson ladders with 10 and 20 cells. We interpret the breather formation as the result of the penetration of vortices into the system.Comment: 5 pages, 5 figure

    Soliton Staircases and Standing Strain Waves in Confined Colloidal Crystals

    Get PDF
    We show by computer simulation of a two-dimensional crystal confined by corrugated walls that confinement can be used to impose a controllable mesoscopic superstructure of predominantly mechanical elastic character. Due to an interplay of the particle density of the system and the width D of the confining channel, "soliton staircases" can be created along both parallel confining boundaries, that give rise to standing strain waves in the entire crystal. The periodicity of these waves is of the same order as D. This mechanism should be useful for structure formation in the self-assembly of various nanoscopic materials.Comment: 22 pages, 5 figure

    Parametric ordering of complex systems

    Get PDF
    Cellular automata (CA) dynamics are ordered in terms of two global parameters, computable {\sl a priori} from the description of rules. While one of them (activity) has been used before, the second one is new; it estimates the average sensitivity of rules to small configurational changes. For two well-known families of rules, the Wolfram complexity Classes cluster satisfactorily. The observed simultaneous occurrence of sharp and smooth transitions from ordered to disordered dynamics in CA can be explained with the two-parameter diagram

    Static and Dynamic Critical Behavior of a Symmetrical Binary Fluid: A Computer Simulation

    Full text link
    A symmetrical binary, A+B Lennard-Jones mixture is studied by a combination of semi-grandcanonical Monte Carlo (SGMC) and Molecular Dynamics (MD) methods near a liquid-liquid critical temperature TcT_c. Choosing equal chemical potentials for the two species, the SGMC switches identities (ABA{\rm A} \to {\rm B} \to {\rm A}) to generate well-equilibrated configurations of the system on the coexistence curve for T<TcT<T_c and at the critical concentration, xc=1/2x_c=1/2, for T>TcT>T_c. A finite-size scaling analysis of the concentration susceptibility above TcT_c and of the order parameter below TcT_c is performed, varying the number of particles from N=400 to 12800. The data are fully compatible with the expected critical exponents of the three-dimensional Ising universality class. The equilibrium configurations from the SGMC runs are used as initial states for microcanonical MD runs, from which transport coefficients are extracted. Self-diffusion coefficients are obtained from the Einstein relation, while the interdiffusion coefficient and the shear viscosity are estimated from Green-Kubo expressions. As expected, the self-diffusion constant does not display a detectable critical anomaly. With appropriate finite-size scaling analysis, we show that the simulation data for the shear viscosity and the mutual diffusion constant are quite consistent both with the theoretically predicted behavior, including the critical exponents and amplitudes, and with the most accurate experimental evidence.Comment: 35 pages, 13 figure

    Comparison of Dissipative Particle Dynamics and Langevin thermostats for out-of-equilibrium simulations of polymeric systems

    Full text link
    In this work we compare and characterize the behavior of Langevin and Dissipative Particle Dynamics (DPD) thermostats in a broad range of non-equilibrium simulations of polymeric systems. Polymer brushes in relative sliding motion, polymeric liquids in Poiseuille and Couette flows, and brush-melt interfaces are used as model systems to analyze the efficiency and limitations of different Langevin and DPD thermostat implementations. Widely used coarse-grained bead-spring models under good and poor solvent conditions are employed to assess the effects of the thermostats. We considered equilibrium, transient, and steady state examples for testing the ability of the thermostats to maintain constant temperature and to reproduce the underlying physical phenomena in non-equilibrium situations. The common practice of switching-off the Langevin thermostat in the flow direction is also critically revisited. The efficiency of different weight functions for the DPD thermostat is quantitatively analyzed as a function of the solvent quality and the non-equilibrium situation.Comment: 12 pages, introduction improved, references added, to appear in Phys. Rev.

    Interfacial friction between semiflexible polymers and crystalline surfaces

    Get PDF
    The results obtained from molecular dynamics simulations of the friction at an interface between polymer melts and weakly attractive crystalline surfaces are reported. We consider a coarse-grained bead-spring model of linear chains with adjustable intrinsic stiffness. The structure and relaxation dynamics of polymer chains near interfaces are quantified by the radius of gyration and decay of the time autocorrelation function of the first normal mode. We found that the friction coefficient at small slip velocities exhibits a distinct maximum which appears due to shear-induced alignment of semiflexible chain segments in contact with solid walls. At large slip velocities the decay of the friction coefficient is independent of the chain stiffness. The data for the friction coefficient and shear viscosity are used to elucidate main trends in the nonlinear shear rate dependence of the slip length. The influence of chain stiffness on the relationship between the friction coefficient and the structure factor in the first fluid layer is discussed.Comment: 31 pages, 12 figure

    On the Symmetry of Universal Finite-Size Scaling Functions in Anisotropic Systems

    Full text link
    In this work a symmetry of universal finite-size scaling functions under a certain anisotropic scale transformation is postulated. This transformation connects the properties of a finite two-dimensional system at criticality with generalized aspect ratio ρ>1\rho > 1 to a system with ρ<1\rho < 1. The symmetry is formulated within a finite-size scaling theory, and expressions for several universal amplitude ratios are derived. The predictions are confirmed within the exactly solvable weakly anisotropic two-dimensional Ising model and are checked within the two-dimensional dipolar in-plane Ising model using Monte Carlo simulations. This model shows a strongly anisotropic phase transition with different correlation length exponents νν\nu_{||} \neq \nu_\perp parallel and perpendicular to the spin axis.Comment: RevTeX4, 4 pages, 3 figure
    corecore