34,094 research outputs found

    How hard is the euro area core? A wavelet analysis of growth cycles in Germany, France and Italy

    Get PDF
    Using recent advances in time-varying spectral methods, this research analyses the growth cycles of the core of the euro area in terms of frequency content and phasing of cycles. The methodology uses the continuous wavelet transform (CWT) and also Hilbert wavelet pairs in the setting of a non-decimated discrete wavelet transform in order to analyse bivariate time series in terms of conventional frequency domain measures from spectral analysis. The findings are that coherence and phasing between the three core members of the euro area (France, Germany and Italy) have increased since the launch of the euro

    On higher derivative corrections to Wess-Zumino and Tachyonic actions in type II super string theory

    Full text link
    We evaluate in detail the string scattering amplitude to compute different interactions of two massless scalars, one tachyon and one closed string Ramond-Ramond field in type II super string theory. In particular we find two scalar field and two tachyon couplings to all orders of α′\alpha' up to on-shell ambiguity. We then obtain the momentum expansion of this amplitude and apply this infinite number of couplings to actually check that the infinite number of tachyon poles of S-matrix element of this amplitude for the p=np=n case (where pp is the spatial dimension of a Dp_p-brane and nn is the rank of a Ramond-Ramond field strength) to all orders of α′\alpha' is precisely equal to the infinite number of tachyon poles of the field theory. In addition to confirming the couplings of closed string Ramond-Ramond field to the world-volume gauge field and scalar fields including commutators, we also propose an extension of the Wess-Zumino action which naturally reproduces these new couplings in field theory such that they could be confirmed with direct S-matrix computations. Finally we show that the infinite number of massless poles and contact terms of this amplitude for the p=n+1p=n+1 case can be reproduced by Chern-Simons, higher derivative corrections of the Wess-Zumino and symmetrized trace tachyon DBI actions.Comment: 51 pages, some refs and comments added, typos are removed. Almost all ambiguities in BPS and non-BPS effective actions have been addresse

    Three-Body Encounters of Black Holes in Globular Clusters

    Get PDF
    Evidence has been mounting for the existence of black holes with masses from 10^2 to 10^4 M_Solar associated with stellar clusters. Such intermediate-mass black holes (IMBHs) will encounter other black holes in the dense cores of these clusters. The binaries produced in these interactions will be perturbed by other objects as well thus changing the orbital characteristics of the binaries. These binaries and their subsequent mergers due to gravitational radiation are important sources of gravitational waves. We present the results of numerical simulations of high mass ratio encounters, which help clarify the interactions of intermediate-mass black holes in globular clusters and help determine what types of detectable gravitational wave signatures are likely.Comment: 4 pages, 3 figures to appear in the proceedings of The Astrophysics of Gravitational Wave Sources, College Park, MD, 24-26 April 200

    Small-X Quarks at HERA Predict the Ultra High Energy Neutrino-Nucleon Cross Section

    Get PDF
    New structure function data at small Bjorken xx from HERA are used along with next-to-leading order QCD evolution to predict a cross section for charged-current interactions of ultrahigh energy neutrinos with nucleons. This new result is over twice the size of previous estimates and has important implications for cosmic ray experiments now underway as well as for KM3 arrays (cubic kilometer-scale neutrino telescopes) now in the planning stages.Comment: KITCS94-9-1, 9 pages (REVTeX) plus 3 postscript figures all uuencode

    Parametric entry corridors for lunar/Mars aerocapture missions

    Get PDF
    Parametric atmospheric entry corridor data are presented for Earth and Mars aerocapture. Parameter ranges were dictated by the range of mission designs currently envisioned as possibilities for the Human Exploration Initiative (HEI). This data, while not providing a means for exhaustive evaluation of aerocapture performance, should prove to be a useful aid for preliminary mission design and evaluation. Entry corridors are expressed as ranges of allowable vacuum periapse altitude of the planetary approach hyperbolic orbit, with chart provided for conversion to an approximate flight path angle corridor at entry interface (125 km altitude). The corridor boundaries are defined by open-loop aerocapture trajectories which satisfy boundary constraints while utilizing the full aerodynamic control capability of the vehicle (i.e., full lift-up or full lift-down). Parameters examined were limited to those of greatest importance from an aerocapture performance standpoint, including the approach orbit hyperbolic excess velocity, the vehicle lift to drag ratio, maximum aerodynamic load factor limit, and the apoapse of the target orbit. The impact of the atmospheric density bias uncertainties are also included. The corridor data is presented in graphical format, and examples of the utilization of these graphs for mission design and evaluation are included

    Invertibility in groupoid C*-algebras

    Full text link
    Given a second-countable, Hausdorff, \'etale, amenable groupoid G with compact unit space, we show that an element a in C*(G) is invertible if and only if \lambda_x(a) is invertible for every x in the unit space of G, where \lambda_x refers to the "regular representation" of C*(G) on l_2(G_x). We also prove that, for every a in C*(G), there exists some x in G^{(0)} such that ||a|| = ||\lambda_x(a)||.Comment: 8 page

    The Metallicity of the Monoceros Stream

    Full text link
    We present low-resolution MMT Hectospec spectroscopy of 594 candidate Monoceros stream member stars. Based on strong color-magnitude diagram overdensities, we targeted three fields within the stream's footprint, with 178 deg < l < 203 deg and -25 deg < b < 25 deg. By comparing the measured iron abundances with those expected from smooth Galactic components alone, we measure, for the first time, the spectroscopic metallicity distribution function for Monoceros. We find the stream to be chemically distinct from both the thick disk and halo, with [Fe/H] = -1, and do not detect a trend in the stream's metallicity with Galactic longitude. Passing from b = +25 deg to b = -25 deg the median Monoceros metallicity trends upward by 0.1 dex, though uncertainties in modeling sample contamination by the disk and halo make this a marginal detection. In each field, we find Monoceros to have an intrinsic [Fe/H] dispersion of 0.10-0.22 dex. From the CaII K line, we measure [Ca/Fe] for a subsample of metal poor program stars with -1.1 < [Fe/H] < -0.5. In two of three fields, we find calcium deficiencies qualitatively similar to previously reported [Ti/Fe] underabundances in Monoceros and the Sagittarius tidal stream. Further, using 90 spectra of thick disk stars in the Monoceros pointings with b ~ +/-25 deg, we detect a 0.22 dex north/south metallicity asymmetry coincident with known stellar density asymmetry at R_GC ~ 12 kpc and |Z| ~ 1.7 kpc. Our median Monoceros [Fe/H] = -1.0 and its relatively low dispersion naturally fit the expectation for an appropriately luminous M_V ~ -13 dwarf galaxy progenitor.Comment: accepted for publication in Ap
    • …
    corecore