55 research outputs found

    Multiple Factors Independently Regulate \u3ci\u3ehilA\u3c/i\u3e and Invasion Gene Expression in \u3ci\u3eSalmonella enterica\u3c/i\u3e Serovar Typhimurium

    Get PDF
    HilA activates the expression of Salmonella enterica serovar Typhimurium invasion genes. To learn more about regulation of hilA, we isolated Tn5 mutants exhibiting reduced hilA and/or invasion gene expression. In addition to expected mutations, we identified Tn5 insertions in pstS, fadD, flhD, flhC, and fliA. Analysis of the pstS mutant indicates that hilA and invasion genes are repressed by the response regulator PhoB in the absence of the Pst high-affinity inorganic phosphate uptake system. This system is required for negative control of the PhoR-PhoB two-component regulatory system, suggesting that hilA expression may be repressed by PhoRPhoB under low extracellular inorganic phosphate conditions. FadD is required for uptake and degradation of long-chain fatty acids, and our analysis of the fadD mutant indicates that hilA is regulated by a FadDdependent, FadR-independent mechanism. Thus, fatty acid derivatives may act as intracellular signals to regulate hilA expression. flhDC and fliA encode transcription factors required for flagellum production, motility, and chemotaxis. Complementation studies with flhC and fliA mutants indicate that FliZ, which is encoded in an operon with fliA, activates expression of hilA, linking regulation of hilA with motility. Finally, epistasis tests showed that PhoB, FadD, FliZ, SirA, and EnvZ act independently to regulate hilA expression and invasion. In summary, our screen has identified several distinct pathways that can modulate S. enterica serovar Typhimurium’s ability to express hilA and invade host cells. Integration of signals from these different pathways may help restrict invasion gene expression during infection

    Prolactin

    Get PDF
    During an oral glucose tolerance test (OGTT) glucose and insulin levels were measured in 26 patients with prolactin-producing pituitary tumours without growth hormone excess. Basal glucose and insulin levels did not differ from the values of an age-matched control group. After glucose load the hyperprolactinaemic patients showed a decrease in glucose tolerance and a hyperinsulinaemia. Bromocriptine (CB 154), which suppressed PRL, improved glucose tolerance and decreased insulin towards normal in a second OGTT. — Human PRL or CB 154 had no significant influence on insulin release due to glucose in the perfused rat pancreas. — These findings suggest a diabetogenic effect of PRL. CB 154 might be a useful drug in improving glucose utilization in hormone-active pituitary tumours

    Multiple Factors Independently Regulate \u3ci\u3ehilA\u3c/i\u3e and Invasion Gene Expression in \u3ci\u3eSalmonella enterica\u3c/i\u3e Serovar Typhimurium

    Get PDF
    HilA activates the expression of Salmonella enterica serovar Typhimurium invasion genes. To learn more about regulation of hilA, we isolated Tn5 mutants exhibiting reduced hilA and/or invasion gene expression. In addition to expected mutations, we identified Tn5 insertions in pstS, fadD, flhD, flhC, and fliA. Analysis of the pstS mutant indicates that hilA and invasion genes are repressed by the response regulator PhoB in the absence of the Pst high-affinity inorganic phosphate uptake system. This system is required for negative control of the PhoR-PhoB two-component regulatory system, suggesting that hilA expression may be repressed by PhoRPhoB under low extracellular inorganic phosphate conditions. FadD is required for uptake and degradation of long-chain fatty acids, and our analysis of the fadD mutant indicates that hilA is regulated by a FadDdependent, FadR-independent mechanism. Thus, fatty acid derivatives may act as intracellular signals to regulate hilA expression. flhDC and fliA encode transcription factors required for flagellum production, motility, and chemotaxis. Complementation studies with flhC and fliA mutants indicate that FliZ, which is encoded in an operon with fliA, activates expression of hilA, linking regulation of hilA with motility. Finally, epistasis tests showed that PhoB, FadD, FliZ, SirA, and EnvZ act independently to regulate hilA expression and invasion. In summary, our screen has identified several distinct pathways that can modulate S. enterica serovar Typhimurium’s ability to express hilA and invade host cells. Integration of signals from these different pathways may help restrict invasion gene expression during infection

    PREVALENCE OF DRUG RESISTANCE AND VIRULENCE FEATURES IN Salmonella spp. ISOLATED FROM FOODS ASSOCIATED OR NOT WITH SALMONELLOSIS IN BRAZIL

    Full text link
    Salmonella is the most common etiological agent of cases and outbreaks of foodborne diarrheal illnesses. The emergence and spread of Salmonella spp., which has become multi-drug resistant and potentially more pathogenic, have increased the concern with this pathogen. In this study, 237 Salmonella spp., associated or not with foodborne salmonellosis in Brazil, belonging mainly to serotype Enteritidis, were tested for antimicrobial susceptibility and the presence of the virulence genes spvC, invA, sefA and pefA. Of the isolates, 46.8% were sensitive to all antimicrobials and 51.9% were resistant to at least one antimicrobial agent. Resistance to more than one antimicrobial agent was observed in 10.5% of the strains. The highest rates of resistance were observed for streptomycin (35.9%) and nalidixic acid (16.9%). No strain was resistant to cefoxitin, cephalothin, cefotaxime, amikacin, ciprofloxacin and imipenem. The invA gene was detected in all strains. Genes spvC and pefA were found in 48.1% and 44.3% of strains, respectively. The gene sefA was detected in 31.6% of the strains and only among S. Enteritidis. Resistance and virulence determinants were detected in Salmonella strains belonging to several serotypes. The high rates of antibiotic-resistance in strains isolated from poultry products demonstrate the potential risk associated with the consumption of these products and the need to ensure good food hygiene practices from farm to table to reduce the spread of pathogens relevant to public health

    Reversible Acyl-Homoserine Lactone Binding to Purified Vibrio fischeri LuxR Protein

    No full text
    The Vibrio fischeri LuxR protein is the founding member of a family of acyl-homoserine lactone-responsive quorum-sensing transcription factors. Previous genetic evidence indicates that in the presence of its quorum-sensing signal, N-(3-oxohexanoyl) homoserine lactone (3OC6-HSL), LuxR binds to lux box DNA within the promoter region of the luxI gene and activates transcription of the luxICDABEG luminescence operon. We have purified LuxR from recombinant Escherichia coli. Purified LuxR binds specifically and with high affinity to DNA containing a lux box. This binding requires addition of 3OC6-HSL to the assay reactions, presumably forming a LuxR-3OC6-HSL complex. When bound to the lux box at the luxI promoter in vitro, LuxR-3OC6-HSL enables E. coli RNA polymerase to initiate transcription from the luxI promoter. Unlike the well-characterized LuxR homolog TraR in complex with its signal (3-oxo-octanoyl-HSL), the LuxR-30C6-HSL complex can be reversibly inactivated by dilution, suggesting that 3OC6-HSL in the complex is not tightly bound and is in equilibrium with the bulk solvent. Thus, although LuxR and TraR both bind 3-oxoacyl-HSLs, the binding is qualitatively different. The differences have implications for the ways in which these proteins respond to decreases in signal concentrations or rapid drops in population density

    Multiple Factors Independently Regulate \u3ci\u3ehilA\u3c/i\u3e and Invasion Gene Expression in \u3ci\u3eSalmonella enterica\u3c/i\u3e Serovar Typhimurium

    Get PDF
    HilA activates the expression of Salmonella enterica serovar Typhimurium invasion genes. To learn more about regulation of hilA, we isolated Tn5 mutants exhibiting reduced hilA and/or invasion gene expression. In addition to expected mutations, we identified Tn5 insertions in pstS, fadD, flhD, flhC, and fliA. Analysis of the pstS mutant indicates that hilA and invasion genes are repressed by the response regulator PhoB in the absence of the Pst high-affinity inorganic phosphate uptake system. This system is required for negative control of the PhoR-PhoB two-component regulatory system, suggesting that hilA expression may be repressed by PhoRPhoB under low extracellular inorganic phosphate conditions. FadD is required for uptake and degradation of long-chain fatty acids, and our analysis of the fadD mutant indicates that hilA is regulated by a FadDdependent, FadR-independent mechanism. Thus, fatty acid derivatives may act as intracellular signals to regulate hilA expression. flhDC and fliA encode transcription factors required for flagellum production, motility, and chemotaxis. Complementation studies with flhC and fliA mutants indicate that FliZ, which is encoded in an operon with fliA, activates expression of hilA, linking regulation of hilA with motility. Finally, epistasis tests showed that PhoB, FadD, FliZ, SirA, and EnvZ act independently to regulate hilA expression and invasion. In summary, our screen has identified several distinct pathways that can modulate S. enterica serovar Typhimurium’s ability to express hilA and invade host cells. Integration of signals from these different pathways may help restrict invasion gene expression during infection

    Identification, Timing, and Signal Specificity of Pseudomonas aeruginosa Quorum-Controlled Genes: a Transcriptome Analysis

    No full text
    There are two interrelated acyl-homoserine lactone quorum-sensing-signaling systems in Pseudomonas aeruginosa. These systems, the LasR-LasI system and the RhlR-RhlI system, are global regulators of gene expression. We performed a transcriptome analysis to identify quorum-sensing-controlled genes and to better understand quorum-sensing control of P. aeruginosa gene expression. We compared gene expression in a LasI-RhlI signal mutant grown with added signals to gene expression without added signals, and we compared a LasR-RhlR signal receptor mutant to its parent. In all, we identified 315 quorum-induced and 38 quorum-repressed genes, representing about 6% of the P. aeruginosa genome. The quorum-repressed genes were activated in the stationary phase in quorum-sensing mutants but were not activated in the parent strain. The analysis of quorum-induced genes suggests that the signal specificities are on a continuum and that the timing of gene expression is on a continuum (some genes are induced early in growth, most genes are induced at the transition from the logarithmic phase to the stationary phase, and some genes are induced during the stationary phase). In general, timing was not related to signal concentration. We suggest that the level of the signal receptor, LasR, is a critical trigger for quorum-activated gene expression. Acyl-homoserine lactone quorum sensing appears to be a system that allows ordered expression of hundreds of genes during P. aeruginosa growth in culture
    corecore