6,935 research outputs found

    Monitoring data in R with the lumberjack package

    Get PDF
    Monitoring data while it is processed and transformed can yield detailed insight into the dynamics of a (running) production system. The lumberjack package is a lightweight package allowing users to follow how an R object is transformed as it is manipulated by R code. The package abstracts all logging code from the user, who only needs to specify which objects are logged and what information should be logged. A few default loggers are included with the package but the package is extensible through user-defined logger objects.Comment: Accepted for publication in the Journal of Statistical Softwar

    Generalized pairwise z-complementary codes

    Get PDF
    An approach to generate generalized pairwise Z-complementary (GPZ) codes, which works in pairs in order to offer a zero correlation zone (ZCZ) in the vicinity of zero phase shift and fit extremely well in power efficient quadrature carrier modems, is introduced in this letter. Each GPZ code has MK sequences, each of length 4NK, whereMis the number of Z-complementary mates, K is a factor to perform Walsh–Hadamard expansions, and N is the sequence length of the Z-complementary code. The proposed GPZ codes include the generalized pairwise complementary (GPC)codes as special cases

    Mass transfer characteristics in structured packing for CO2 emission reduction processes

    Get PDF
    Acid gas treating and CO2 capture from flue gas by absorption have gained wide importance over the past few decades. With the implementation of more stringent environmental regulations and the awareness of the greenhouse effect, the need for efficient removal of acid gases such as CO2 (carbon dioxide) has increased significantly. Therefore, additional effort for research in this field is inevitable. For flue gas processes the ratio of absorption solvent to gas throughput is very different compared to acid gas treating processes owing to the atmospheric pressures and the dilution effect of combustion air. Moreover, in flue gas applications pressure drop is a very important process parameter. Packing types are required that allow for low pressure drop in combination with high interfacial areas at low liquid loading per square meter. The determination of interfacial areas in gas-liquid contactors by means of the chemical method (Danckwerts, P. V. Gas-liquid reactions; McGraw-Hill: London, 1970) has been very frequently applied. Unfortunately, many of the model systems proposed in the literature are reversible and therefore this condition possibly is not met. Versteeg et al. (Versteeg, G. F.; Kuipers, J. A. M.; Beckum, F. P. H.; van Swaaij, W. P. M. Chem. Eng. Sci. 1989, 44, 2292) have demonstrated that for reversible reactions the conditions for the determination of the interfacial area by means of the chemical method are much more severe. In a study by Raynal et al. (Raynal, L.; Ballaguet, J. P.; Berrere-Tricca, C. Chem. Eng. Sci. 2004, 59, 5395), it has been shown that there is a dependency of the interfacial area on the packing height. Unfortunately, most model systems used, e.g., CO2-caustic soda (as used by Raynal et al.), are much more complex and consist of (a set of) reversible reaction(s). The natures of these systems make the conditions at which the interfacial area can be determined much more severe and put more limitations on the process conditions and experimental equipment than a priori can be expected. Therefore, an extended absorption model is required to determine the conditions at which the interfacial area can be measured without detailed knowledge of the values of the liquid-side mass transfer coefficient, k1, beforehand.

    Adaptive Transmission Techniques for Mobile Satellite Links

    Full text link
    Adapting the transmission rate in an LMS channel is a challenging task because of the relatively fast time variations, of the long delays involved, and of the difficulty in mapping the parameters of a time-varying channel into communication performance. In this paper, we propose two strategies for dealing with these impairments, namely, multi-layer coding (MLC) in the forward link, and open-loop adaptation in the return link. Both strategies rely on physical-layer abstraction tools for predicting the link performance. We will show that, in both cases, it is possible to increase the average spectral efficiency while at the same time keeping the outage probability under a given threshold. To do so, the forward link strategy will rely on introducing some latency in the data stream by using retransmissions. The return link, on the other hand, will rely on a statistical characterization of a physical-layer abstraction measure.Comment: Presented at the 30th AIAA International Communications Satellite Systems Conference (ICSSC), Ottawa, Canada, 2012. Best Professional Paper Awar

    Rooftop and indoor reception with transmit diversity applied to DVB-T networks: A long term measurement campaign

    Get PDF
    Although transmit Delay Diversity (DD) can provide a gain in indoor and other Non Line of Sight situations (NLOS), it can introduce degradation in rooftop reception. In fact, when the Ricean K factor of the channel is significantly high (e.g. Line of Sight reception), the channel performs similar to an AWGN channel where the performance degrades due to DD that artificially increase the fading. This paper investigates through practical evaluation the impacts of Transmit DD on LOS and NLOS stationary reception. Then, it studies 2 techniques to reduce the degradation performance in LOS while aiming to keep the same diversity gain in NLOS receptio

    An efficient error resilience scheme based on Wyner-Ziv coding for region-of-interest protection of wavelet based video transmission

    Get PDF
    In this paper, we propose a bandwidth efficient error resilience scheme for wavelet based video transmission over wireless channel by introducing an additional Wyner-Ziv (WZ) stream to protect region of interest (ROI) in a frame. In the proposed architecture, the main video stream is compressed by a generic wavelet domain coding structure and passed through the error prone channel without any protection. Meanwhile, the predefined ROI area related wavelet coefficients obtained after an integer wavelet transform will be specially protected by WZ codec in an additional channel during transmission. At the decoder side, the error-prone ROI related wavelet coefficients will be used as side information to help decoding the WZ stream. Different size of WZ bit streams can be applied in order to meet different bandwidth condition and different requirement of end users. The simulation results clearly revealed that the proposed scheme has distinct advantages in saving bandwidth comparing with fully applied FEC algorithm to whole video stream and in the meantime offer the robust transmission over error prone channel for certain video applications

    Review of standard traditional distortion metrics and a need for perceptual distortion metric at a (sub) macroblock level

    Get PDF
    Within a video encoder the distortion metric performs an Image Quality Assessment (IQA). However, to exploit perceptual redundancy to lower the convex hull of the Rate- Distortion (R-D) curve, a Perceptual Distortion Metric (PDM) modelling of the Human Visual System (HVS) should be used. Since block-based video encoders like H.264/AVC operate at the Sub-Macroblock (Sub-MB) level, there exists a need to produce a locally operating PDM. A locally operating PDM must meet the requirements of Standard Traditional Distortion Metrics (STDMs), in that it must satisfy the Triangle Equality Rule. Hence, this paper presents a review of STDMs of SSE, SAD and SATD against the perceptual IQA of Structural Similarity (SSIM) at the Sub-MB level. Furthermore, this paper illustrates the Universal Bounded Region (UBR) by block size that supports the triangle equality rule within the Sub-MB level, between SSIM and STDMs like SATD at the prediction stage
    • 

    corecore