190 research outputs found

    An advanced 3D multi-body system model for the human lumbar spine

    Get PDF
    Series : Mechanisms and machine science, ISSN 2211-0984, vol. 24A novel 3D multi-body system model of the human lumbar spine is presented, allowing the dynamic study of the all set but also to access mechanical demands, characteristics and performance under work of the individual intervertebral discs. An advanced FEM analysis was used for the most precise characterization of the disc 6DOF mechanical behavior, in order to build up a tool capable of predicting and assist in the design of disc recovery strategies – namely in the development of replace-ment materials for the degenerated disc nucleus – as well as in the analysis of variations in the me-chanical properties (disorders) at disc level or kinematic structure (e.g. interbody fusion, pedicle fixa-tion, etc.), and its influence in the overall spine dynamics and at motion segments individual level. Preliminary results of the model, at different levels of its development, are presented

    Interplay of Mre11 Nuclease with Dna2 plus Sgs1 in Rad51-Dependent Recombinational Repair

    Get PDF
    The Mre11/Rad50/Xrs2 complex initiates IR repair by binding to the end of a double-strand break, resulting in 5′ to 3′ exonuclease degradation creating a single-stranded 3′ overhang competent for strand invasion into the unbroken chromosome. The nuclease(s) involved are not well understood. Mre11 encodes a nuclease, but it has 3′ to 5′, rather than 5′ to 3′ activity. Furthermore, mutations that inactivate only the nuclease activity of Mre11 but not its other repair functions, mre11-D56N and mre11-H125N, are resistant to IR. This suggests that another nuclease can catalyze 5′ to 3′ degradation. One candidate nuclease that has not been tested to date because it is encoded by an essential gene is the Dna2 helicase/nuclease. We recently reported the ability to suppress the lethality of a dna2Δ with a pif1Δ. The dna2Δ pif1Δ mutant is IR-resistant. We have determined that dna2Δ pif1Δ mre11-D56N and dna2Δ pif1Δ mre11-H125N strains are equally as sensitive to IR as mre11Δ strains, suggesting that in the absence of Dna2, Mre11 nuclease carries out repair. The dna2Δ pif1Δ mre11-D56N triple mutant is complemented by plasmids expressing Mre11, Dna2 or dna2K1080E, a mutant with defective helicase and functional nuclease, demonstrating that the nuclease of Dna2 compensates for the absence of Mre11 nuclease in IR repair, presumably in 5′ to 3′ degradation at DSB ends. We further show that sgs1Δ mre11-H125N, but not sgs1Δ, is very sensitive to IR, implicating the Sgs1 helicase in the Dna2-mediated pathway

    DNA resection in eukaryotes: deciding how to fix the break

    Get PDF
    DNA double-strand breaks are repaired by different mechanisms, including homologous recombination and nonhomologous end-joining. DNA-end resection, the first step in recombination, is a key step that contributes to the choice of DSB repair. Resection, an evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint activation and is critical for survival. Failure to regulate and execute this process results in defective recombination and can contribute to human disease. Here, I review recent findings on the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the regulatory strategies that control it, and highlight the consequences of both its impairment and its deregulation

    A Journey from Thermally Tunable Synthesis to Spectroscopy of Phenylmethanimine in Gas Phase and Solution

    Get PDF
    Phenylmethanimine is an aromatic imine with a twofold relevance in chemistry: organic synthesis and astrochemistry. To tackle both aspects, a multidisciplinary strategy has been exploited and a new, easily accessible synthetic approach to generate stable imine-intermediates in the gas phase and in solution has been introduced. The combination of this formation pathway, based on the thermal decomposition of hydrobenzamide, with a state-of-the-art computational characterization of phenylmethanimine laid the foundation for its first laboratory observation by means of rotational electric resonance spectroscopy. Both E and Z isomers have been accurately characterized, thus providing a reliable basis to guide future astronomical observations. A further characterization has been carried out by nuclear magnetic resonance spectroscopy, showing the feasibility of this synthetic approach in solution. The temperature dependence as well as possible mechanisms of the thermolysis process have been examined. © 2020 The Authors. Published by Wiley-VCH Gmb

    CtIP Mutations Cause Seckel and Jawad Syndromes

    Get PDF
    Seckel syndrome is a recessively inherited dwarfism disorder characterized by microcephaly and a unique head profile. Genetically, it constitutes a heterogeneous condition, with several loci mapped (SCKL1-5) but only three disease genes identified: the ATR, CENPJ, and CEP152 genes that control cellular responses to DNA damage. We previously mapped a Seckel syndrome locus to chromosome 18p11.31-q11.2 (SCKL2). Here, we report two mutations in the CtIP (RBBP8) gene within this locus that result in expression of C-terminally truncated forms of CtIP. We propose that these mutations are the molecular cause of the disease observed in the previously described SCKL2 family and in an additional unrelated family diagnosed with a similar form of congenital microcephaly termed Jawad syndrome. While an exonic frameshift mutation was found in the Jawad family, the SCKL2 family carries a splicing mutation that yields a dominant-negative form of CtIP. Further characterization of cell lines derived from the SCKL2 family revealed defective DNA damage induced formation of single-stranded DNA, a critical co-factor for ATR activation. Accordingly, SCKL2 cells present a lowered apoptopic threshold and hypersensitivity to DNA damage. Notably, over-expression of a comparable truncated CtIP variant in non-Seckel cells recapitulates SCKL2 cellular phenotypes in a dose-dependent manner. This work thus identifies CtIP as a disease gene for Seckel and Jawad syndromes and defines a new type of genetic disease mechanism in which a dominant negative mutation yields a recessively inherited disorder

    Minimal stress shielding with a Mallory-Head titanium femoral stem with proximal porous coating in total hip arthroplasty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As longevity of cementless femoral components enters the third decade, concerns arise with long-term effects of fixation mode on femoral bone morphology. We examined the long-term consequences on femoral remodeling following total hip arthroplasty with a porous plasma-sprayed tapered titanium stem.</p> <p>Methods</p> <p>Clinical data and radiographs were reviewed from a single center for 97 randomly selected cases implanted with the Mallory-Head Porous femoral component during primary total hip arthroplasty. Measurements were taken from preoperative and long-term follow-up radiographs averaging 14 years postoperative. Average changes in the proximal, middle and diaphyseal zones were determined.</p> <p>Results</p> <p>On anteroposterior radiographs, the proximal cortical thickness was unchanged medially and the lateral zone increased 1.3%. Middle cortical thickness increased 4.3% medially and 1.2% laterally. Distal cortical thickness increased 9.6% medially and 1.9% laterally. Using the anteroposterior radiographs, canal fill at 100 mm did not correlate with bony changes at any level (Spearman's rank correlation coefficient of -0.18, 0.05, and 0.00; p value = 0.09, 0.67, 0.97). On lateral radiographs, the proximal cortical thickness increased 1.5% medially and 0.98% laterally. Middle cortical thickness increased 2.4% medially and 1.3% laterally. Distal cortical thickness increased 3.5% medially and 2.1% laterally. From lateral radiographs, canal fill at 100 mm correlated with bony hypertrophy at the proximal, mid-level, and distal femur (Spearman's rank correlation coefficient of 0.85, 0.33, and 0.28, respectively; p value = 0.001, 0.016, and 0.01, respectively).</p> <p>Conclusion</p> <p>Stress shielding is minimized with the Mallory-Head titanium tapered femoral stem with circumferential proximal plasma-sprayed coating in well-fixed and well-functioning total hip arthroplasty. Additionally, the majority of femora demonstrated increased cortical thickness in all zones around the stem prosthesis. Level of Evidence: Therapeutic Level III.</p
    corecore