5,437 research outputs found

    Spin-statistics transmutation in relativistic quantum field theories of dyons

    Get PDF
    We analyse spin and statistics of quantum dyon fields, i.e. fields carrying both electric and magnetic charge, in 3+1 space-time dimensions. It has been shown long time ago that, at the quantum mechanical level, a composite dyon made out of a magnetic pole of charge g and a particle of electric charge e possesses half-integral spin and fermionic statistics, if the constituents are bosons and the Dirac quantization condition eg=2Ď€neg=2\pi n holds, with n odd. This phenomenon is called spin-statistics transmutation. We show that the same phenomenon occurs at the quantum field theory level for an elementary dyon. This analysis requires the construction of gauge invariant charged dyon fields. Dirac's proposal for such fields, relying on a Coulomb-like photon cloud, leads to quantum correlators exhibiting an unphysical dependence on the Dirac-string. Recently Froehlich and Marchetti proposed a recipe for charged dyon fields, based on a sum over Mandelstam-strings, which overcomes this problem. Using this recipe we derive explicit expressions for the quantum field theory correlators and we provide a proof of the occurrence of spin-statistics transmutation. The proof reduces to a computation of the self-linking numbers of dyon worldlines and Mandelstam strings, projected on a fixed time three-space. Dyon composites are also analysed. The transmutation discussed in this paper bares some analogy with the appearance of anomalous spin and statistics for particles or vortices in Chern-Simons theories in 2+1 dimensions. However, peculiar features appear in 3+1 dimensions e.g. in the spin addition rule.Comment: 32 pages, LaTeX, no figure

    Interacting branes, dual branes, and dyonic branes: a unifying lagrangian approach in D dimensions

    Get PDF
    This paper presents a general covariant lagrangian framework for the dynamics of a system of closed n-branes and dual (D-n-4)-branes in D dimensions, interacting with a dynamical (n+1)-form gauge potential. The framework proves sufficiently general to include also a coupling of the branes to (the bosonic sector of) a dynamical supergravity theory. We provide a manifestly Lorentz-invariant and S-duality symmetric Lagrangian, involving the (n+1)-form gauge potential and its dual (D-n-3)-form gauge potential in a symmetric way. The corresponding action depends on generalized Dirac-strings. The requirement of string-independence of the action leads to Dirac-Schwinger quantization conditions for the charges of branes and dual branes, but produces also additional constraints on the possible interactions. It turns out that a system of interacting dyonic branes admits two quantum mechanically inequivalent formulations, involving inequivalent quantization conditions. Asymmetric formulations involving only a single vector potential are also given. For the special cases of dyonic branes in even dimensions known results are easily recovered. As a relevant application of the method we write an effective action which implements the inflow anomaly cancellation mechanism for interacting heterotic strings and five-branes in D=10. A consistent realization of this mechanism requires, in fact, dynamical p-form potentials and a systematic introduction of Dirac-strings.Comment: 36 pages, LaTeX, no figure

    On the existence of self-similar spherically symmetric wave maps coupled to gravity

    Get PDF
    We present a detailed analytical study of spherically symmetric self-similar solutions in the SU(2) sigma model coupled to gravity. Using a shooting argument we prove that there is a countable family of solutions which are analytic inside the past self-similarity horizon. In addition, we show that for sufficiently small values of the coupling constant these solutions possess a regular future self-similarity horizon and thus are examples of naked singularities. One of the solutions constructed here has been recently found as the critical solution at the threshold of black hole formation.Comment: 15 pages, LaTe

    Development of Silicon Strip Detectors for a Medium Energy Gamma-ray Telescope

    Full text link
    We report on the design, production, and testing of advanced double-sided silicon strip detectors under development at the Max-Planck-Institute as part of the Medium Energy Gamma-ray Astronomy (MEGA) project. The detectors are designed to form a stack, the "tracker," with the goal of recording the paths of energetic electrons produced by Compton-scatter and pair-production interactions. Each layer of the tracker is composed of a 3 x 3 array of 500 micron thick silicon wafers, each 6 cm x 6 cm and fitted with 128 orthogonal p and n strips on opposite sides (470 micron pitch). The strips are biased using the punch-through principle and AC-coupled via metal strips separated from the strip implant by an insulating oxide/nitride layer. The strips from adjacent wafers in the 3 x 3 array are wire-bonded in series and read out by 128-channel TA1.1 ASICs, creating a total 19 cm x 19 cm position-sensitive area. At 20 degrees C a typical energy resolution of 15-20 keV FWHM, a position resolution of 290 microns, and a time resolution of ~1 microsec is observed.Comment: 9 pages, 13 figures, to appear in NIM-A (Proceedings of the 9th European Symposium on Semiconductor Detectors

    Radiation reaction and four-momentum conservation for point-like dyons

    Get PDF
    We construct for a system of point-like dyons a conserved energy-momentum tensor entailing finite momentum integrals, that takes the radiation reaction into account.Comment: 12 pages, no figure

    Test Results on the Silicon Pixel Detector for the TTF-FEL Beam Trajectory Monitor

    Full text link
    Test measurements on the silicon pixel detector for the beam trajectory monitor at the free electron laser of the TESLA test facility are presented. To determine the electronic noise of detector and read-out and to calibrate the signal amplitude of different pixels the 6 keV photons of the manganese K line are used. Two different methods determine the spatial accuracy of the detector: In one setup a laser beam is focused to a straight line and moved across the pixel structure. In the other the detector is scanned using a low-intensity electron beam of an electron microscope. Both methods show that the symmetry axis of the detector defines a straight line within 0.4 microns. The sensitivity of the detector to low energy X-rays is measured using a vacuum ultraviolet beam at the synchrotron light source HASYLAB. Additionally, the electron microscope is used to study the radiation hardness of the detector.Comment: 14 pages (Latex), 13 figures (Postscript), submitted to Nuclear Instruments and Methods

    EIT ground-state cooling of long ion strings

    Get PDF
    Electromagnetically-induced-transparency (EIT) cooling is a ground-state cooling technique for trapped particles. EIT offers a broader cooling range in frequency space compared to more established methods. In this work, we experimentally investigate EIT cooling in strings of trapped atomic ions. In strings of up to 18 ions, we demonstrate simultaneous ground state cooling of all radial modes in under 1 ms. This is a particularly important capability in view of emerging quantum simulation experiments with large numbers of trapped ions. Our analysis of the EIT cooling dynamics is based on a novel technique enabling single-shot measurements of phonon numbers, by rapid adiabatic passage on a vibrational sideband of a narrow transition
    • …
    corecore