39,123 research outputs found

    Benchmark ages for the Gaia benchmark stars

    Full text link
    In the era of large-scale surveys of stars in the Milky Way, stellar ages are crucial for studying the evolution of the Galaxy. But determining ages of field stars is notoriously difficult; therefore, we attempt to determine benchmark ages for the extensively studied Gaia benchmark stars which can be used for validation purposes. By searching the literature for age estimates from different methods and deriving new ages based on Bayesian isochrone fitting, we are able to put reliable limits on the ages of 16 out of the 33 benchmark stars. The giants with well-defined ages are all young, and an expansion of the sample to include older giants with asteroseismic ages would be beneficial. Some of the stars have surface parameters inconsistent with isochrones younger than 16 Gyr. Including α\alpha-enhancement in the models when relevant resolves some of these cases, but others clearly highlight discrepancies between the models and observations. We test the impact of atomic diffusion on the age estimates by fitting to the actual surface metallicity of the models instead of the initial value and find that the effect is negligible except for a single turn-off star. Finally, we show that our ability to determine isochrone-based ages for large spectroscopic surveys largely mirrors our ability to determine ages for these benchmark stars, except for stars with logg4.4\log g \gtrsim 4.4 dex since their location in the HR diagram is almost age insensitive. Hence, isochrone fitting does not constrain their ages given the typical uncertainties of spectroscopic stellar parameters.Comment: Accepted in MNRAS. 69 pages (18 for main text, 11 for appendix, and 40 for extra figures

    Neonatal weight loss in breast and formula-fed infants

    Get PDF
    We have observed an increase in the number of breast fed babies presenting with dehydration and/or failure to thrive because of lactation failure and non-recognition of feeding problems. Recent reports1,2 support this experience and recommend monitoring of the weight of infants through the neonatal period. However, these reports acknowledge uncertainty as to what actually constitutes normal neonatal weight loss. Maisels and colleagues published two studies which have been quoted as giving guidance on normal loss. Both studies were designed primarily to study factors that influence breast milk jaundice. The first3 reported a mean weight loss of about 6% in 100 unselected well babies during the first 3 days. The subsequent study4 reported a mean weight loss of 6.86% in 186 infants. The timescale over which babies were weighed was not clearly indicated, although it may have only been 2-3 days. The sample was neither population based nor randomly selected, being largely preselected because of the presence of more pronounced jaundice. The distribution of data points for early neonatal weight loss are likely to be skewed, yet both studies reported the results as mean (SD). Owing to the design and method of data presentation, these studies cannot reliably inform the debate as to what constitutes the norm. Marchini and colleagues published reports also designed primarily to study other issues. One5 indicated a mean early weight loss of 5.7%. Measurements were recorded over a three day period, and no indication is given of the skewness of the data. Another study6 reported a median weight loss of about 6% recorded over a four day period. At least one baby lost > 15% of his/her birth weight during this time, but there is no clear information as to the frequency with which more extreme degrees of weight loss are observed

    Macular Bioaccelerometers on Earth and in Space

    Get PDF
    Space flight offers the opportunity to study linear bioaccelerometers (vestibular maculas) in the virtual absence of a primary stimulus, gravitational acceleration. Macular research in space is particularly important to NASA because the bioaccelerometers are proving to be weighted neural networks in which information is distributed for parallel processing. Neural networks are plastic and highly adaptive to new environments. Combined morphological-physiological studies of maculas fixed in space and following flight should reveal macular adaptive responses to microgravity, and their time-course. Ground-based research, already begun, using computer-assisted, 3-dimensional reconstruction of macular terminal fields will lead to development of computer models of functioning maculas. This research should continue in conjunction with physiological studies, including work with multichannel electrodes. The results of such a combined effort could usher in a new era in understanding vestibular function on Earth and in space. They can also provide a rational basis for counter-measures to space motion sickness, which may prove troublesome as space voyager encounter new gravitational fields on planets, or must re-adapt to 1 g upon return to earth

    The Design of Pumpjets for Hydrodynamic Propulsion

    Get PDF
    A procedure for use in the design of a wake adapted pumpjet mounted on the aft end of a body of revolution is presented. To this end, a pumpjet is designed for the Akron airship. The propulsor mass flow is selected to minimize kinetic energy losses through the duct and in the discharge jet. The shaft speed and disk size are selected to satisfy specified limits of cavitation performance and to provide acceptable blade loading. The streamtubes which pass through a propulsor mounted on a tapered afterbody follow essentially conical surfaces. A method is provided for defining these surfaces as a function of shroud geometry, rotor head distribution, and the energy distribution of the ingested mass flow. The three-dimensional effects to which the conical flow subjects the cylindrical blade design sections are described and a technique is presented which permits incorporation of these effects in the blade design procedure

    Atmospheric hydroxyl radical (OH) abundances from ground-based ultraviolet solar spectra: an improved retrieval method

    Get PDF
    The Fourier Transform Ultraviolet Spectrometer (FTUVS) instrument has recorded a long-term data record of the atmospheric column abundance of the hydroxyl radical (OH) using the technique of high resolution solar absorption spectroscopy. We report new efforts in improving the precision of the OH measurements in order to better model the diurnal, seasonal, and interannual variability of odd hydrogen (HOx) chemistry in the stratosphere, which, in turn, will improve our understanding of ozone chemistry and its long-term changes. Until the present, the retrieval method has used a single strong OH absorption line P1(1) in the near-ultraviolet at 32,341 cm−1. We describe a new method that uses an average based on spectral fits to multiple lines weighted by line strength and fitting precision. We have also made a number of improvements in the ability to fit a model to the spectral feature, which substantially reduces the scatter in the measurements of OH abundances

    Getting to know you: Accuracy and error in judgments of character

    Get PDF
    Character judgments play an important role in our everyday lives. However, decades of empirical research on trait attribution suggest that the cognitive processes that generate these judgments are prone to a number of biases and cognitive distortions. This gives rise to a skeptical worry about the epistemic foundations of everyday characterological beliefs that has deeply disturbing and alienating consequences. In this paper, I argue that this skeptical worry is misplaced: under the appropriate informational conditions, our everyday character-trait judgments are in fact quite trustworthy. I then propose a mindreading-based model of the socio-cognitive processes underlying trait attribution that explains both why these judgments are initially unreliable, and how they eventually become more accurate

    Analytical results for the distribution of shortest path lengths in random networks

    Full text link
    We present two complementary analytical approaches for calculating the distribution of shortest path lengths in Erdos-R\'enyi networks, based on recursion equations for the shells around a reference node and for the paths originating from it. The results are in agreement with numerical simulations for a broad range of network sizes and connectivities. The average and standard deviation of the distribution are also obtained. In the case that the mean degree scales as NαN^{\alpha} with the network size, the distribution becomes extremely narrow in the asymptotic limit, namely almost all pairs of nodes are equidistant, at distance d=1/αd=\lfloor 1/\alpha \rfloor from each other. The distribution of shortest path lengths between nodes of degree mm and the rest of the network is calculated. Its average is shown to be a monotonically decreasing function of mm, providing an interesting relation between a local property and a global property of the network. The methodology presented here can be applied to more general classes of networks.Comment: 12 pages, 4 figures, accepted to EP

    Analysis of WFPC-2 Core Samples for MMOD Discrimination

    Get PDF
    An examination of the Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC-2) radiator assembly was conducted at NASA Goddard Space Flight Center during the summer of 2009. Immediately apparent was the predominance of impact features, identified as simple or complex craters, resident only in the thermal paint layer; similar features were observed during a prior survey of the WFPC-1 radiator. Larger impact features displayed spallation zones, darkened areas, and other features not observed in impacts onto bare surfaces. Craters were extracted by coring the radiator in the NASA Johnson Space Centers Space Exposed Hardware cleanroom and were subsequently examined using scanning electron microscopy/energy dispersive X-ray spectroscopy to determine the likely origin, e.g., micrometeoritic or orbital debris, of the impacting projectile. Recently, a selection of large cores was re-examined using a new technique developed to overcome some limitations of traditional crater imaging and analysis. This technique, motivated by thin section analysis, examines a polished, lateral surface area revealed by cross-sectioning the core sample. This paper reviews the technique, the classification rubric as extended by this technique, and results to date
    corecore