9,049 research outputs found

    Conductance fluctuations in metallic nanogaps made by electromigration

    Full text link
    We report on low temperature conductance measurements of gold nanogaps fabricated by controlled electromigration. Fluctuations of the conductance due to quantum interferences and depending both on bias voltage and magnetic field are observed. By analyzing the voltage and magnetoconductance correlation functions we determine the type of electron trajectories generating the observed quantum interferences and the effective characteristic time of phase coherence in our device.Comment: 5 pages, 4 figures, to appear in J. Appl. Phy

    Relativistic theory for time and frequency transfer to order c^{-3}

    Get PDF
    This paper is motivated by the current development of several space missions (e.g. ACES on International Space Station) that will fly on Earth orbit laser cooled atomic clocks, providing a time-keeping accuracy of the order of 5~10^{-17} in fractional frequency. We show that to such accuracy, the theory of frequency transfer between Earth and Space must be extended from the currently known relativistic order 1/c^2 (which has been needed in previous space experiments such as GP-A) to the next relativistic correction of order 1/c^3. We find that the frequency transfer includes the first and second-order Doppler contributions, the Einstein gravitational red-shift and, at the order 1/c^3, a mixture of these effects. As for the time transfer, it contains the standard Shapiro time delay, and we present an expression also including the first and second-order Sagnac corrections. Higher-order relativistic corrections, at least O(1/c^4), are numerically negligible for time and frequency transfers in these experiments, being for instance of order 10^{-20} in fractional frequency. Particular attention is paid to the problem of the frequency transfer in the two-way experimental configuration. In this case we find a simple theoretical expression which extends the previous formula (Vessot et al. 1980) to the next order 1/c^3. In the Appendix we present the detailed proofs of all the formulas which will be needed in such experiments.Comment: 11 pages, 2 figures, to appear in Astronomy & Astrophysic

    Longitudinal and Transverse Zeeman Ladders in the Ising-Like Chain Antiferromagnet BaCo2V2O8

    Full text link
    We explore the spin dynamics emerging from the N\'eel phase of the chain compound antiferromagnet BaCo2V2O8. Our inelastic neutron scattering study reveals unconventional discrete spin excitations, so called Zeeman ladders, understood in terms of spinon confinement, due to the interchain attractive linear potential. These excitations consist in two interlaced series of modes, respectively with transverse and longitudinal polarization. The latter have no classical counterpart and are related to the zero-point fluctuations that weaken the ordered moment in weakly coupled quantum chains. Our analysis reveals that BaCo2V2O8, with moderate Ising anisotropy and sizable interchain interactions, remarkably fulfills the conditions necessary for the observation of these longitudinal excitations.Comment: 5 pages, 4 figures, 2 additional pages of supplemental material with 2 figures; Journal ref. added; 1 page erratum added at the end with 1 figur

    Valency of rare earths in RIn3 and RSn3: Ab initio analysis of electric-field gradients

    Full text link
    In RIn3 and RSn3 the rare earth (R) is trivalent, except for Eu and Yb, which are divalent. This was experimentally determined in 1977 by perturbed angular correlation measurements of the electric-field gradient on a 111Cd impurity. At that time, the data were interpreted using a point charge model, which is now known to be unphysical and unreliable. This makes the valency determination potentially questionable. We revisit these data, and analyze them using ab initio calculations of the electric-field gradient. From these calculations, the physical mechanism that is responsible for the influence of the valency on the electric-field gradient is derived. A generally applicable scheme to interpret electric-field gradients is used, which in a transparent way correlates the size of the field gradient with chemical properties of the system.Comment: 10 page
    corecore