200 research outputs found

    Reply to the comment by Jacobs and Thorpe

    Full text link
    Reply to a comment on "Infinite-Cluster geometry in central-force networks", PRL 78 (1997), 1480. A discussion about the order of the rigidity percolation transition.Comment: 1 page revTe

    Failure Probabilities and Tough-Brittle Crossover of Heterogeneous Materials with Continuous Disorder

    Full text link
    The failure probabilities or the strength distributions of heterogeneous 1D systems with continuous local strength distribution and local load sharing have been studied using a simple, exact, recursive method. The fracture behavior depends on the local bond-strength distribution, the system size, and the applied stress, and crossovers occur as system size or stress changes. In the brittle region, systems with continuous disorders have a failure probability of the modified-Gumbel form, similar to that for systems with percolation disorder. The modified-Gumbel form is of special significance in weak-stress situations. This new recursive method has also been generalized to calculate exactly the failure probabilities under various boundary conditions, thereby illustrating the important effect of surfaces in the fracture process.Comment: 9 pages, revtex, 7 figure

    Infinite-cluster geometry in central-force networks

    Full text link
    We show that the infinite percolating cluster (with density P_inf) of central-force networks is composed of: a fractal stress-bearing backbone (Pb) and; rigid but unstressed ``dangling ends'' which occupy a finite volume-fraction of the lattice (Pd). Near the rigidity threshold pc, there is then a first-order transition in P_inf = Pd + Pb, while Pb is second-order with exponent Beta'. A new mean field theory shows Beta'(mf)=1/2, while simulations of triangular lattices give Beta'_tr = 0.255 +/- 0.03.Comment: 6 pages, 4 figures, uses epsfig. Accepted for publication in Physical Review Letter

    Current-voltage characteristics of diluted Josephson-junction arrays: scaling behavior at current and percolation threshold

    Full text link
    Dynamical simulations and scaling arguments are used to study the current-voltage (IV) characteristics of a two-dimensional model of resistively shunted Josephson-junction arrays in presence of percolative disorder, at zero external field. Two different limits of the Josephson-coupling concentration pp are considered, where pcp_c is the percolation threshold. For pp >> pcp_c and zero temperature, the IV curves show power-law behavior above a disorder dependent critical current. The power-law behavior and critical exponents are consistent with a simple scaling analysis. At pcp_c and finite temperature TT, the results show the scaling behavior of a T=0 superconducting transition. The resistance is linear but vanishes for decreasing TT with an apparent exponential behavior. Crossover to non-linearity appears at currents proportional to % T^{1+\nu_T}, with a thermal-correlation length exponent νT\nu_T consistent with the corresponding value for the diluted XY model at pcp_c.Comment: Revtex, 9 postscript pages, to appear in Phys. Rev.

    Thermodynamics of Mesoscopic Vortex Systems in 1+1 Dimensions

    Full text link
    The thermodynamics of a disordered planar vortex array is studied numerically using a new polynomial algorithm which circumvents slow glassy dynamics. Close to the glass transition, the anomalous vortex displacement is found to agree well with the prediction of the renormalization-group theory. Interesting behaviors such as the universal statistics of magnetic susceptibility variations are observed in both the dense and dilute regimes of this mesoscopic vortex system.Comment: 4 pages, REVTEX, 6 figures included. Comments and suggestions can be sent to [email protected]

    Towards a first principles description of phonons in Ni50_{50}Pt50_{50} disordered alloys: the role of relaxation

    Full text link
    Using a combination of density-functional perturbation theory and the itinerant coherent potential approximation, we study the effects of atomic relaxation on the inelastic incoherent neutron scattering cross sections of disordered Ni50_{50}Pt50_{50} alloys. We build on previous work, where empirical force constants were adjusted {\it ad hoc} to agree with experiment. After first relaxing all structural parameters within the local-density approximation for ordered NiPt compounds, density-functional perturbation theory is then used to compute phonon spectra, densities of states, and the force constants. The resulting nearest-neighbor force constants are first compared to those of other ordered structures of different stoichiometry, and then used to generate the inelastic scattering cross sections within the itinerant coherent potential approximation. We find that structural relaxation substantially affects the computed force constants and resulting inelastic cross sections, and that the effect is much more pronounced in random alloys than in ordered alloys.Comment: 8 pages, 3 eps figures, uses revtex

    Percolation Threshold, Fisher Exponent, and Shortest Path Exponent for 4 and 5 Dimensions

    Full text link
    We develop a method of constructing percolation clusters that allows us to build very large clusters using very little computer memory by limiting the maximum number of sites for which we maintain state information to a number of the order of the number of sites in the largest chemical shell of the cluster being created. The memory required to grow a cluster of mass s is of the order of sθs^\theta bytes where θ\theta ranges from 0.4 for 2-dimensional lattices to 0.5 for 6- (or higher)-dimensional lattices. We use this method to estimate dmind_{\scriptsize min}, the exponent relating the minimum path \ell to the Euclidean distance r, for 4D and 5D hypercubic lattices. Analyzing both site and bond percolation, we find dmin=1.607±0.005d_{\scriptsize min}=1.607\pm 0.005 (4D) and dmin=1.812±0.006d_{\scriptsize min}=1.812\pm 0.006 (5D). In order to determine dmind_{\scriptsize min} to high precision, and without bias, it was necessary to first find precise values for the percolation threshold, pcp_c: pc=0.196889±0.000003p_c=0.196889\pm 0.000003 (4D) and pc=0.14081±0.00001p_c=0.14081\pm 0.00001 (5D) for site and pc=0.160130±0.000003p_c=0.160130\pm 0.000003 (4D) and pc=0.118174±0.000004p_c=0.118174\pm 0.000004 (5D) for bond percolation. We also calculate the Fisher exponent, τ\tau, determined in the course of calculating the values of pcp_c: τ=2.313±0.003\tau=2.313\pm 0.003 (4D) and τ=2.412±0.004\tau=2.412\pm 0.004 (5D)

    Absence of Two-Dimensional Bragg Glasses

    Full text link
    The stability to dislocations of the elastic phase, or ``Bragg glass'', of a randomly pinned elastic medium in two dimensions is studied using the minimum-cost-flow algorithm for a disordered fully-packed loop model. The elastic phase is found to be unstable to dislocations due to the quenched disorder. The energetics of dislocations are discussed within the framework of renormalization group predictions as well as in terms of a domain wall picture.Comment: 5 pages, REVTEX, 3 figures included. Further information can be obtained from [email protected]

    Probability Distribution of the Shortest Path on the Percolation Cluster, its Backbone and Skeleton

    Full text link
    We consider the mean distribution functions Phi(r|l), Phi(B)(r|l), and Phi(S)(r|l), giving the probability that two sites on the incipient percolation cluster, on its backbone and on its skeleton, respectively, connected by a shortest path of length l are separated by an Euclidean distance r. Following a scaling argument due to de Gennes for self-avoiding walks, we derive analytical expressions for the exponents g1=df+dmin-d and g1B=g1S-3dmin-d, which determine the scaling behavior of the distribution functions in the limit x=r/l^(nu) much less than 1, i.e., Phi(r|l) proportional to l^(-(nu)d)x^(g1), Phi(B)(r|l) proportional to l^(-(nu)d)x^(g1B), and Phi(S)(r|l) proportional to l^(-(nu)d)x^(g1S), with nu=1/dmin, where df and dmin are the fractal dimensions of the percolation cluster and the shortest path, respectively. The theoretical predictions for g1, g1B, and g1S are in very good agreement with our numerical results.Comment: 10 pages, 3 figure

    Scaling in the time-dependent failure of a fiber bundle with local load sharing

    Full text link
    We study the scaling behaviors of a time-dependent fiber-bundle model with local load sharing. Upon approaching the complete failure of the bundle, the breaking rate of fibers diverges according to r(t)(Tft)ξr(t)\propto (T_f-t)^{-\xi}, where TfT_f is the lifetime of the bundle, and ξ1.0\xi \approx 1.0 is a quite universal scaling exponent. The average lifetime of the bundle scales with the system size as NδN^{-\delta}, where δ\delta depends on the distribution of individual fiber as well as the breakdown rule.Comment: 5 pages, 4 eps figures; to appear in Phys. Rev.
    corecore