2,517 research outputs found

    The Potential Energy Landscape and Mechanisms of Diffusion in Liquids

    Full text link
    The mechanism of diffusion in supercooled liquids is investigated from the potential energy landscape point of view, with emphasis on the crossover from high- to low-T dynamics. Molecular dynamics simulations with a time dependent mapping to the associated local mininum or inherent structure (IS) are performed on unit-density Lennard-Jones (LJ). New dynamical quantities introduced include r2_{is}(t), the mean-square displacement (MSD) within a basin of attraction of an IS, R2(t), the MSD of the IS itself, and g_{loc}(t) the mean waiting time in a cooperative region. At intermediate T, r2_{is}(t) posesses an interval of linear t-dependence allowing calculation of an intrabasin diffusion constant D_{is}. Near T_{c} diffusion is intrabasin dominated with D = D_{is}. Below T_{c} the local waiting time tau_{loc} exceeds the time, tau_{pl}, needed for the system to explore the basin, indicating the action of barriers. The distinction between motion among the IS below T_{c} and saddle, or border dynamics above T_{c} is discussed.Comment: submitted to pr

    Instantaneous Normal Mode analysis of liquid HF

    Full text link
    We present an Instantaneous Normal Modes analysis of liquid HF aimed to clarify the origin of peculiar dynamical properties which are supposed to stem from the arrangement of molecules in linear hydrogen-bonded network. The present study shows that this approach is an unique tool for the understanding of the spectral features revealed in the analysis of both single molecule and collective quantities. For the system under investigation we demonstrate the relevance of hydrogen-bonding ``stretching'' and fast librational motion in the interpretation of these features.Comment: REVTeX, 7 pages, 5 eps figures included. Minor changes in the text and in a figure. Accepted for publication in Phys. Rev. Let

    Dynamics and geometric properties of the k-Trigonometric model

    Full text link
    We analyze the dynamics and the geometric properties of the Potential Energy Surfaces (PES) of the k-Trigonometric Model (kTM), defined by a fully-connected k-body interaction. This model has no thermodynamic transition for k=1, a second order one for k=2, and a first order one for k>2. In this paper we i) show that the single particle dynamics can be traced back to an effective dynamical system (with only one degree of freedom); ii) compute the diffusion constant analytically; iii) determine analytically several properties of the self correlation functions apart from the relaxation times which we calculate numerically; iv) relate the collective correlation functions to the ones of the effective degree of freedom using an exact Dyson-like equation; v) using two analytical methods, calculate the saddles of the PES that are visited by the system evolving at fixed temperature. On the one hand we minimize |grad V|^2, as usually done in the numerical study of supercooled liquids and, on the other hand, we compute the saddles with minimum distance (in configuration space) from initial equilibrium configurations. We find the same result from the two calculations and we speculate that the coincidence might go beyond the specific model investigated here.Comment: 36 pages, 13 figure

    Heterogeneous Dynamics, Marginal Stability and Soft Modes in Hard Sphere Glasses

    Full text link
    In a recent publication we established an analogy between the free energy of a hard sphere system and the energy of an elastic network [1]. This result enables one to study the free energy landscape of hard spheres, in particular to define normal modes. In this Letter we use these tools to analyze the activated transitions between meta-bassins, both in the aging regime deep in the glass phase and near the glass transition. We observe numerically that structural relaxation occurs mostly along a very small number of nearly-unstable extended modes. This number decays for denser packing and is significantly lowered as the system undergoes the glass transition. This observation supports that structural relaxation and marginal modes share common properties. In particular theoretical results [2, 3] show that these modes extend at least on some length scale l∗∼(ϕc−ϕ)−1/2l^*\sim (\phi_c-\phi)^{-1/2} where ϕc\phi_c corresponds to the maximum packing fraction, i.e. the jamming transition. This prediction is consistent with very recent numerical observations of sheared systems near the jamming threshold [4], where a similar exponent is found, and with the commonly observed growth of the rearranging regions with compression near the glass transition.Comment: 6 pages, improved versio

    Dephasing of Electrons by Two-Level Defects in Quantum Dots

    Full text link
    The electron dephasing time Ï„Ï•\tau_{\phi} in a diffusive quantum dot is calculated by considering the interaction between the electron and dynamical defects, modelled as two-level system. Using the standard tunneling model of glasses, we obtain a linear temperature dependence of 1/Ï„Ï•1/\tau_{\phi}, consistent with the experimental observation. However, we find that, in order to obtain dephasing times on the order of nanoseconds, the number of two-level defects needs to be substantially larger than the typical concentration in glasses. We also find a finite system-size dependence of Ï„Ï•\tau_{\phi}, which can be used to probe the effectiveness of surface-aggregated defects.Comment: two-column 9 page

    Instantaneous Normal Mode Analysis of Supercooled Water

    Full text link
    We use the instantaneous normal mode approach to provide a description of the local curvature of the potential energy surface of a model for water. We focus on the region of the phase diagram in which the dynamics may be described by the mode-coupling theory. We find, surprisingly, that the diffusion constant depends mainly on the fraction of directions in configuration space connecting different local minima, supporting the conjecture that the dynamics are controlled by the geometric properties of configuration space. Furthermore, we find an unexpected relation between the number of basins accessed in equilibrium and the connectivity between them.Comment: 5 pages, 4 figure

    REDD+ on the rocks? Conflict over forest and politics of justice in Vietnam

    Get PDF
    In Vietnam, villagers involved in a REDD+ (reduced emissions from deforestation and forest degradation) pilot protect areas with rocks which have barely a tree on them. The apparent paradox indicates how actual practices differ from general ideas about REDD+ due to ongoing conflict over forest, and how contestations over the meaning of justice are a core element in negotiations over REDD+. We explore these politics of justice by examining how the actors involved in the REDD+ pilot negotiate the particular subjects, dimensions, and authority of justice considered relevant, and show how politics of justice are implicit to practical decisions in project implementation. Contestations over the meaning of justice are an important element in the practices and processes constituting REDD+ at global, national and local levels, challenging uniform definitions of forest justice and how forests ought to be managed
    • …
    corecore