17,249 research outputs found
Deconstructing the eradication of new world screwworm in North America: retrospective analysis and climate warming effects.
Before its eradication from North America, the subtropical-tropical new world screwworm fly Cochliomyia hominivorax (Coquerel) invaded southwestern temperate areas of the U.S.A., where it caused myiasis in wildlife and livestock. Outbreaks of the fly occurred during years when adult migrants were carried northward on North American monsoon winds from the northern areas of Mexico and south Texas. We deconstruct, retrospectively, the biology and the effect of weather on the eradication of the fly in North America. Screwworm was found to be an ideal candidate for eradication using the sterile insect technique (SIT) because females mate only once, whereas males are polygynous, and, although it has a high reproductive potential, field population growth rates are low in tropical areas. In northern areas, eradication was enhanced by cool-cold weather, whereas eradication in tropical Mexico and Central America is explained by the SIT. Despite low average efficacy of SIT releases (approximately 1.7%), the added pressure of massive SIT releases reduced intrinsically low fly populations, leading to mate-limited extinction. Non-autochthonous cases of myiasis occur in North America and, if the fly reestablishes, climate warming by 2045-2055 will expand the area of favourability and increase the frequency and severity of outbreaks
Quantum-enhanced gyroscopy with rotating anisotropic Bose–Einstein condensates
High-precision gyroscopes are a key component of inertial navigation systems. By considering matter wave gyroscopes that make use of entanglement it should be possible to gain some advantages in terms of sensitivity, size, and resources used over unentangled optical systems. In this paper we consider the details of such a quantum-enhanced atom interferometry scheme based on atoms trapped in a carefully-chosen rotating trap. We consider all the steps: entanglement generation, phase imprinting, and read-out of the signal and show that quantum enhancement should be possible in principle. While the improvement in performance over equivalent unentangled schemes is small, our feasibility study opens the door to further developments and improvements
On the bend number of circular-arc graphs as edge intersection graphs of paths on a grid
Golumbic, Lipshteyn and Stern \cite{Golumbic-epg} proved that every graph can
be represented as the edge intersection graph of paths on a grid (EPG graph),
i.e., one can associate with each vertex of the graph a nontrivial path on a
rectangular grid such that two vertices are adjacent if and only if the
corresponding paths share at least one edge of the grid. For a nonnegative
integer , -EPG graphs are defined as EPG graphs admitting a model in
which each path has at most bends. Circular-arc graphs are intersection
graphs of open arcs of a circle. It is easy to see that every circular-arc
graph is a -EPG graph, by embedding the circle into a rectangle of the
grid. In this paper, we prove that every circular-arc graph is -EPG, and
that there exist circular-arc graphs which are not -EPG. If we restrict
ourselves to rectangular representations (i.e., the union of the paths used in
the model is contained in a rectangle of the grid), we obtain EPR (edge
intersection of path in a rectangle) representations. We may define -EPR
graphs, , the same way as -EPG graphs. Circular-arc graphs are
clearly -EPR graphs and we will show that there exist circular-arc graphs
that are not -EPR graphs. We also show that normal circular-arc graphs are
-EPR graphs and that there exist normal circular-arc graphs that are not
-EPR graphs. Finally, we characterize -EPR graphs by a family of
minimal forbidden induced subgraphs, and show that they form a subclass of
normal Helly circular-arc graphs
Engineering entanglement for metrology with rotating matter waves
Entangled states of rotating, trapped ultracold bosons form a very promising scenario for quantum metrology. In order to employ such states for metrology, it is vital to understand their detailed form and the enhanced accuracy with which they could measure phase, in this case generated through rotation. In this work, we study the rotation of ultracold bosons in an asymmetric trapping potential beyond the lowest Landau level (LLL) approximation. We demonstrate that while the LLL can identify reasonably the critical frequency for a quantum phase transition and entangled state generation, it is vital to go beyond the LLL to identify the details of the state and quantify the quantum Fisher information (which bounds the accuracy of the phase measurement). We thus identify a new parameter regime for useful entangled state generation, amenable to experimental investigation
An Inversion Disrupting FAM134B Is Associated with Sensory Neuropathy in the Border Collie Dog Breed
Sensory neuropathy in the Border Collie is a severe neurological disorder caused by the degeneration of sensory and, to a lesser extent, motor nerve cells with clinical signs starting between 2 and 7 months of age. Using a genome-wide association study approach with three cases and 170 breed matched controls, a suggestive locus for sensory neuropathy was identified that was followed up using a genome sequencing approach. An inversion disrupting the candidate gene FAM134B was identified. Genotyping of additional cases and controls and RNAseq analysis provided strong evidence that the inversion is causal. Evidence of cryptic splicing resulting in novel exon transcription for FAM134B was identified by RNAseq experiments. This investigation demonstrates the identification of a novel sensory neuropathy associated mutation, by mapping using a minimal set of cases and subsequent genome sequencing. Through mutation screening, it should be possible to reduce the frequency of or completely eliminate this debilitating condition from the Border Collie breed population
Evolution and CNO yields of Z=10^-5 stars and possible effects on CEMP production
Our main goals are to get a deeper insight into the evolution and final fates
of intermediate-mass, extremely metal-poor (EMP) stars. We also aim to
investigate their C, N, and O yields. Using the Monash University Stellar
Evolution code we computed and analysed the evolution of stars of metallicity Z
= 10^-5 and masses between 4 and 9 M_sun, from their main sequence until the
late thermally pulsing (super) asymptotic giant branch, TP-(S)AGB phase. Our
model stars experience a strong C, N, and O envelope enrichment either due to
the second dredge-up, the dredge-out phenomenon, or the third dredge-up early
during the TP-(S)AGB phase. Their late evolution is therefore similar to that
of higher metallicity objects. When using a standard prescription for the mass
loss rates during the TP-(S)AGB phase, the computed stars lose most of their
envelopes before their cores reach the Chandrasekhar mass, so our standard
models do not predict the occurrence of SNI1/2 for Z = 10^-5 stars. However, we
find that the reduction of only one order of magnitude in the mass-loss rates,
which are particularly uncertain at this metallicity, would prevent the
complete ejection of the envelope, allowing the stars to either explode as an
SNI1/2 or become an electron-capture SN. Our calculations stop due to an
instability near the base of the convective envelope that hampers further
convergence and leaves remnant envelope masses between 0.25 M_sun for our 4
M_sun model and 1.5 M_sun for our 9 M_sun model. We present two sets of C, N,
and O yields derived from our full calculations and computed under two
different assumptions, namely, that the instability causes a practically
instant loss of the remnant envelope or that the stars recover and proceed with
further thermal pulses. Our results have implications for the early chemical
evolution of the Universe.Comment: 12 pages, 13 figures, accepted for publication in A&
- …