384 research outputs found

    Cerebral hemodynamics on MR perfusion images before and after bypass surgery in patients with giant intracranial aneurysms

    Get PDF
    Preoperative assessment of the anatomy and dynamics of cerebral circulation for patients with giant intracranial aneurysm can improve both outcome prediction and therapeutic approach. The aim of our study was to use perfusion MR imaging to evaluate cerebral hemodynamics in such patients before and after extraintracranial high-flow bypass surgery. METHODS: Five patients with a giant aneurysm of the intracranial internal carotid artery underwent MR studies before, 1 week after, and 1 month after high-flow bypass surgery. We performed MR and digital subtraction angiography, and conventional and functional MR sequences (diffusion and perfusion). Surgery consisted of middle cerebral artery (MCA)-internal carotid artery bypass with saphenous vein grafts (n = 4) or MCA-external carotid artery bypass (n = 1). RESULTS: In four patients, MR perfusion study showed impaired hemodynamics in the vascular territory supplied by the MCA of the aneurysm side, characterized by significantly reduced mean cerebral blood flow (CBF), whereas mean transit time (MTT) and regional cerebral blood volume (rCBV) were either preserved, reduced, or increased. After surgery, angiography showed good canalization of the bypass graft. MR perfusion data obtained after surgery showed improved cerebral hemodynamics in all cases, with a return of CBF index (CBFi), MTT, and rCBV to nearly normal values. CONCLUSION: Increased MTT with increased or preserved rCBV can be interpreted as a compensatory vasodilatory response to reduced perfusion pressure, presumably from compression and disturbed flow in the giant aneurysmal sac. When maximal vasodilation has occurred, however, the brain can no longer compensate for diminished perfusion by vasodilation, and rCBV and CBFi diminish. Bypass surgery improves hemodynamics, increasing perfusion pressure and, thus, CBFi. Perfusion MR imaging can be used to evaluate cerebral hemodynamics in patients with intracranial giant aneurysm.BACKGROUND AND PURPOSE: Preoperative assessment of the anatomy and dynamics of cerebral circulation for patients with giant intracranial aneurysm can improve both outcome prediction and therapeutic approach. The aim of our study was to use perfusion MR imaging to evaluate cerebral hemodynamics in such patients before and after extraintracranial high-flow bypass surgery. METHODS: Five patients with a giant aneurysm of the intracranial internal carotid artery underwent MR studies before, 1 week after, and 1 month after high-flow bypass surgery. We performed MR and digital subtraction angiography, and conventional and functional MR sequences (diffusion and perfusion). Surgery consisted of middle cerebral artery (MCA)-internal carotid artery bypass with saphenous vein grafts (n = 4) or MCA-external carotid artery bypass (n = 1). RESULTS: In four patients, MR perfusion study showed impaired hemodynamics in the vascular territory supplied by the MCA of the aneurysm side, characterized by significantly reduced mean cerebral blood flow (CBF), whereas mean transit time (MTT) and regional cerebral blood volume (rCBV) were either preserved, reduced, or increased. After surgery, angiography showed good canalization of the bypass graft. MR perfusion data obtained after surgery showed improved cerebral hemodynamics in all cases, with a return of CBF index (CBFi), MTT, and rCBV to nearly normal values. CONCLUSION: Increased MTT with increased or preserved rCBV can be interpreted as a compensatory vasodilatory response to reduced perfusion pressure, presumably from compression and disturbed flow in the giant aneurysmal sac. When maximal vasodilation has occurred, however, the brain can no longer compensate for diminished perfusion by vasodilation, and rCBV and CBFi diminish. Bypass surgery improves hemodynamics, increasing perfusion pressure and, thus, CBFi. Perfusion MR imaging can be used to evaluate cerebral hemodynamics in patients with intracranial giant aneurysm

    Automatic identification of sites prone to topographic seismic amplification effects by the current seismic codes

    Get PDF
    Current seismic codes provide proxies to estimate seismic amplification effects expected in correspondence of some morphological features. To make possible any empirical validation of these proxies, these features must be univocally identified on the basis of an automatic procedure. To this purpose, based on geomorphological considerations, a GIS-based numerical approach has been developed. The results of a morphometric analysis allowed the correct identification and mapping of the landforms of concern, at a detail corresponding to the resolution of the available digital elevation model (DEM). Some case-studies are provided to show the feasibility of the proposed approach. © 2023 The Author

    Cognitive analytics management of the customer lifetime value: an artificial neural network approach

    Get PDF
    Purpose: The purpose of this study is to show that the use of CAM (cognitive analytics management) methodology is a valid tool to describe new technology implementations for businesses. Design/methodology/approach: Starting from a dataset of recipes, we were able to describe consumers through a variant of the RFM (recency, frequency and monetary value) model. It has been possible to categorize the customers into clusters and to measure their profitability thanks to the customer lifetime value (CLV). Findings: After comparing two machine learning algorithms, we found out that self-organizing map better classifies the customer base of the retailer. The algorithm was able to extract three clusters that were described as personas using the values of the customer lifetime value and the scores of the variant of the RFM model. Research limitations/implications: The results of this methodology are strictly applicable to the retailer which provided the data. Practical implications: Even though, this methodology can produce useful information for designing promotional strategies and improving the relationship between company and customers. Social implications: Customer segmentation is an essential part of the marketing process. Improving further segmentation methods allow even small and medium companies to effectively target customers to better deliver to society the value they offer. Originality/value: This paper shows the application of CAM methodology to guide the implementation and the adoption of a new customer segmentation algorithm based on the CLV

    Solid lipid nanoparticles of cholesteryl butyrate inhibit the proliferation of cancer cells in vitro and in vivo models.

    Get PDF
    BACKGROUND AND PURPOSE: Solid lipid nanoparticles containing cholesteryl butyrate (cholbut SLN) can be a delivery system for the anti-cancer drug butyrate. These nanoparticles inhibit adhesion of polymorphonuclear and tumour cells to endothelial cells and migration of tumour cells, suggesting that they may act as anti-inflammatory and anti-tumour agents. Here we have evaluated the effects of cholbut SLN on tumour cell growth using in vitro and in vivo models. EXPERIMENTAL APPROACH: Cholbut SLNs were incubated with cultures of four tumour cell lines, and cell growth was analysed by assessing viability, clonogenic capacity and cell cycle. Effects on intracellular signalling was assessed by Western blot analysis of Akt expression. The in vivo anti-tumour activity was measured in two models of PC-3 cell xenografts in SCID/Beige mice. KEY RESULTS: Cholbut SLN inhibited tumour cell line viability, clonogenic activity, Akt phosphorylation and cell cycle progression. In mice injected i.v. with PC3-Luc cells and treated with cholbut SLN, . in vivo optical imaging and histological analysis showed no metastases in the lungs of the treated mice. In another set of mice injected s.c. with PC-3 cells and treated with cholbut SLN when the tumour diameter reached 2 mm, analysis of the tumour dimensions showed that treatment with cholbut SLN substantially delayed tumour growth. CONCLUSION AND IMPLICATIONS: Cholbut SLN were effective in inhibiting tumour growth in vitro and in vivo. These effects may involve, in part, inhibition of Akt phosphorylation, which adds another mechanism to the activity of this multipotent drug

    The path from trigeminal asymmetry to cognitive impairment: a behavioral and molecular study

    Get PDF
    Trigeminal input exerts acute and chronic effects on the brain, modulating cognitive functions. Here, new data from humans and animals suggest that these effects are caused by trigeminal influences on the Locus Coeruleus (LC). In humans subjects clenching with masseter asymmetric activity, occlusal correction improved cognition, alongside with reductions in pupil size and anisocoria, proxies of LC activity and asymmetry, respectively. Notably, reductions in pupil size at rest on the hypertonic side predicted cognitive improvements. In adult rats, a distal unilateral section of the trigeminal mandibular branch reduced, on the contralateral side, the expression of c-Fos (brainstem) and BDNF (brainstem, hippocampus, frontal cortex). This counterintuitive finding can be explained by the following model: teeth contact perception loss on the lesioned side results in an increased occlusal effort, which enhances afferent inputs from muscle spindles and posterior periodontal receptors, spared by the distal lesion. Such effort leads to a reduced engagement of the intact side, with a corresponding reduction in the afferent inputs to the LC and in c-Fos and BDNF gene expression. In conclusion, acute effects of malocclusion on performance seem mediated by the LC, which could also contribute to the chronic trophic dysfunction induced by loss of trigeminal input

    Cerebrospinal fluid levels of L-glutamate signal central inflammatory neurodegeneration in multiple sclerosis

    Get PDF
    Excessive extracellular concentrations of L-glutamate (L-Glu) can be neurotoxic and contribute to neurodegenerative processes in multiple sclerosis (MS). The association between cerebrospinal fluid (CSF) L-Glu levels, clinical features, and inflammatory biomarkers in patients with MS remains unclear. In 179 MS patients (relapsing remitting, RR, N = 157; secondary progressive/primary progressive, SP/PP, N = 22), CSF levels of L-Glu at diagnosis were determined and compared with those obtained in a group of 40 patients with non-inflammatory/non-degenerative disorders. Disability at the time of diagnosis, and after 1 year follow-up, was assessed using the Expanded Disability Status Scale (EDSS). CSF concentrations of lactate and of a large set of pro-inflammatory and anti-inflammatory molecules were explored. CSF levels of L-Glu were slightly reduced in MS patients compared to controls. In RR-MS patients, L-Glu levels correlated with EDSS after 1 year follow-up. Moreover, in MS patients, significant correlations were found between L-Glu and both CSF levels of lactate and the inflammatory molecules interleukin (IL)-2, IL-6, and IL-1 receptor antagonist. Altered expression of L-Glu is associated with disability progression, oxidative stress, and inflammation. These findings identify CSF L-Glu as a candidate neurochemical marker of inflammatory neurodegeneration in MS. (Figure presented.)

    Cerebrospinal fluid levels of L-glutamate signal central inflammatory neurodegeneration in multiple sclerosis

    Get PDF
    Excessive extracellular concentrations of L-glutamate (L-Glu) can be neurotoxic and contribute to neurodegenerative processes in multiple sclerosis (MS). The association between cerebrospinal fluid (CSF) L-Glu levels, clinical features, and inflammatory biomarkers in patients with MS remains unclear. In 179 MS patients (relapsing remitting, RR, N = 157; secondary progressive/primary progressive, SP/PP, N = 22), CSF levels of L-Glu at diagnosis were determined and compared with those obtained in a group of 40 patients with non-inflammatory/non-degenerative disorders. Disability at the time of diagnosis, and after 1 year follow-up, was assessed using the Expanded Disability Status Scale (EDSS). CSF concentrations of lactate and of a large set of pro-inflammatory and anti-inflammatory molecules were explored. CSF levels of L-Glu were slightly reduced in MS patients compared to controls. In RR-MS patients, L-Glu levels correlated with EDSS after 1 year follow-up. Moreover, in MS patients, significant correlations were found between L-Glu and both CSF levels of lactate and the inflammatory molecules interleukin (IL)-2, IL-6, and IL-1 receptor antagonist. Altered expression of L-Glu is associated with disability progression, oxidative stress, and inflammation. These findings identify CSF L-Glu as a candidate neurochemical marker of inflammatory neurodegeneration in MS. (Figure presented.)

    “Capacidad de transmisión de fasciola hepatica de lymnaeidos de la Provincia de Mendoza”

    Get PDF
    La fascioliasis es una enfermedad producida por trematodos hepáticos del género Fasciola (Trematoda: Fasciolidae), los cuales, para completar su ciclo, necesitan caracoles acuáticos de la familia Lymnaeidae. Esta enfermedad, no solo produce cuantiosas pérdidas a la ganadería, sino que también es una importante zoonosis que afecta a millones de personas en América, Europa, África, Asia y Oceanía
    corecore