1,908 research outputs found
The negative acute phase response of serum transthyretin following Streptococcus suis infection in the pig
Peer reviewedPublisher PD
Differential Uptake of Gold Nanoparticles by 2 Species of Tadpole, the Wood Frog (Lithobates Sylvaticus) and the Bullfrog (Lithobates Catesbeianus)
Engineered nanoparticles are aquatic contaminants of emerging concern that exert ecotoxicological effects on a wide variety of organisms. We exposed cetyltrimethylammonium bromide–capped spherical gold nanoparticles to wood frog and bullfrog tadpoles with conspecifics and in combination with the other species continuously for 21 d, then measured uptake and localization of gold. Wood frog tadpoles alone and in combination with bullfrog tadpoles took up significantly more gold than bullfrogs. Bullfrog tadpoles in combination with wood frogs took up significantly more gold than controls. The rank order of weight-normalized gold uptake was wood frogs in combination \u3e wood frogs alone \u3e bullfrogs in combination \u3e bullfrogs alone \u3e controls. In all gold-exposed groups of tadpoles, gold was concentrated in the anterior region compared with the posterior region of the body. The concentration of gold nanoparticles in the anterior region of wood frogs both alone and in combination with bullfrogs was significantly higher than the corresponding posterior regions. We also measured depuration time of gold in wood frogs. After 21 d in a solution of gold nanoparticles, tadpoles lost \u3e83% of internalized gold when placed in gold-free water for 5 d. After 10 d in gold-free water, tadpoles lost 94% of their gold. After 15 d, gold concentrations were below the level of detection. Our finding of differential uptake between closely related species living in similar habitats with overlapping geographical distributions argues against generalizing toxicological effects of nanoparticles for a large group of organisms based on measurements in only one species
Spatio-temporal crime hotspots and the ambient population
It is well known that, due to that inherent differences in their underlying causal mechanisms, different types of crime will have variable impacts on different groups of people. Furthermore, the locations of vulnerable groups of people are highly temporally dynamic. Hence an accurate estimate of the true population at risk in a given place and time is vital for reliable crime rate calculation and hotspot generation. However, the choice of denominator is fraught with difficulty because data describing popular movements, rather than simply residential location, are limited. This research will make use of new ‘crowd-sourced’ data in an attempt to create more accurate estimates of the population at risk for mobile crimes such as street robbery. Importantly, these data are both spatially and temporally referenced and can therefore be used to estimate crime rate significance in both space and time. Spatio-temporal cluster hunting techniques will be used to identify crime hotspots that are significant given the size of the ambient population in the area at the time
Antihydrogen formation dynamics in a multipolar neutral anti-atom trap
Antihydrogen production in a neutral atom trap formed by an octupole-based
magnetic field minimum is demonstrated using field-ionization of weakly bound
anti-atoms. Using our unique annihilation imaging detector, we correlate
antihydrogen detection by imaging and by field-ionization for the first time.
We further establish how field-ionization causes radial redistribution of the
antiprotons during antihydrogen formation and use this effect for the first
simultaneous measurements of strongly and weakly bound antihydrogen atoms.
Distinguishing between these provides critical information needed in the
process of optimizing for trappable antihydrogen. These observations are of
crucial importance to the ultimate goal of performing CPT tests involving
antihydrogen, which likely depends upon trapping the anti-atom
Search For Trapped Antihydrogen
We present the results of an experiment to search for trapped antihydrogen
atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator.
Sensitive diagnostics of the temperatures, sizes, and densities of the trapped
antiproton and positron plasmas have been developed, which in turn permitted
development of techniques to precisely and reproducibly control the initial
experimental parameters. The use of a position-sensitive annihilation vertex
detector, together with the capability of controllably quenching the
superconducting magnetic minimum trap, enabled us to carry out a
high-sensitivity and low-background search for trapped synthesised antihydrogen
atoms. We aim to identify the annihilations of antihydrogen atoms held for at
least 130 ms in the trap before being released over ~30 ms. After a three-week
experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9
positrons to produce 6 10^5 antihydrogen atoms, we have identified six
antiproton annihilation events that are consistent with the release of trapped
antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts,
is incompatible with this observation at a significance of 5.6 sigma. Extensive
simulations predict that an alternative source of annihilations, the escape of
mirror-trapped antiprotons, is highly unlikely, though this possibility has not
yet been ruled out experimentally.Comment: 12 pages, 7 figure
A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices
Improvement of thermoelectric systems in terms of performance and range of
applications relies on progress in materials science and optimization of device
operation. In this chapter, we focuse on optimization by taking into account
the interaction of the system with its environment. For this purpose, we
consider the illustrative case of a thermoelectric generator coupled to two
temperature baths via heat exchangers characterized by a thermal resistance,
and we analyze its working conditions. Our main message is that both electrical
and thermal impedance matching conditions must be met for optimal device
performance. Our analysis is fundamentally based on linear nonequilibrium
thermodynamics using the force-flux formalism. An outlook on mesoscopic systems
is also given.Comment: Chapter 14 in "Thermoelectric Nanomaterials", Editors Kunihito
Koumoto and Takao Mori, Springer Series in Materials Science Volume 182
(2013
Production of antihydrogen at reduced magnetic field for anti-atom trapping
We have demonstrated production of antihydrogen in a 1T solenoidal
magnetic field. This field strength is significantly smaller than that used in
the first generation experiments ATHENA (3T) and ATRAP (5T). The
motivation for using a smaller magnetic field is to facilitate trapping of
antihydrogen atoms in a neutral atom trap surrounding the production region. We
report the results of measurements with the ALPHA (Antihydrogen Laser PHysics
Apparatus) device, which can capture and cool antiprotons at 3T, and then
mix the antiprotons with positrons at 1T. We infer antihydrogen production
from the time structure of antiproton annihilations during mixing, using mixing
with heated positrons as the null experiment, as demonstrated in ATHENA.
Implications for antihydrogen trapping are discussed
T cell receptor sequence clustering and antigen specificity
There has been increasing interest in the role of T cells and their involvement in cancer, autoimmune and infectious diseases. However, the nature of T cell receptor (TCR) epitope recognition at a repertoire level is not yet fully understood. Due to technological advances a plethora of TCR sequences from a variety of disease and treatment settings has become readily available. Current efforts in TCR specificity analysis focus on identifying characteristics in immune repertoires which can explain or predict disease outcome or progression, or can be used to monitor the efficacy of disease therapy. In this context, clustering of TCRs by sequence to reflect biological similarity, and especially to reflect antigen specificity have become of paramount importance. We review the main TCR sequence clustering methods and the different similarity measures they use, and discuss their performance and possible improvement. We aim to provide guidance for non-specialists who wish to use TCR repertoire sequencing for disease tracking, patient stratification or therapy prediction, and to provide a starting point for those aiming to develop novel techniques for TCR annotation through clustering
Leopard Panthera pardus density in southern Mozambique: evidence from spatially explicit capture–recapture in Xonghile Game Reserve
Rigorous status estimates of populations of large carnivores are necessary to inform their management and help evaluate the effectiveness of conservation interventions. The African leopard Panthera pardus faces rising anthropogenic pressures across most of its contracting sub-Saharan range, but the scarcity of reliable population estimates means that management decisions often have to rely on expert opinion rather than being based on sound evidence. This is particularly true for Mozambique, where little is known about the ecology or conservation status of leopard populations as a result of prolonged armed conflict. We used camera trapping and spatially explicit capture–recapture models to provide a leopard density estimate in Xonghile Game Reserve in southern Mozambique, which is part of the Greater Limpopo Transfrontier conservation initiative. The estimated population density was 2.60 ± SE 0.96 leopards/100 km2. Our study provides a baseline leopard density for the region and the first empirical density estimate for southern Mozambique. Our results also suggest that current methods used to set trophy hunting quotas for leopards, both in Mozambique and elsewhere in Africa, may be leading to unsustainable quotas, which highlights the importance of robust empirical data in guiding conservation policy
2-methylbutyryl-CoA dehydrogenase deficiency associated with autism and mental retardation: a case report
<p>Abstract</p> <p>Background</p> <p>2-methylbutyryl-CoA dehydrogenase deficiency or short/branched chain acyl-CoA dehydrogenase deficiency (SBCADD) is caused by a defect in the degradation pathway of the amino acid L-isoleucine.</p> <p>Methods</p> <p>We report a four-year-old mentally retarded Somali boy with autism and a history of seizures, who was found to excrete increased amounts of 2-methylbutyryl glycine in the urine. The SBCAD gene was examined with sequence analysis. His development was assessed with psychometric testing before and after a trial with low protein diet.</p> <p>Results</p> <p>We found homozygosity for A > G changing the +3 position of intron 3 (c.303+3A > G) in the SBCAD gene. Psychometric testing showed moderate mental retardation and behavioral scores within the autistic spectrum. No beneficial effect was detected after 5 months with a low protein diet.</p> <p>Conclusion</p> <p>This mutation was also found in two previously reported cases with SBCADD, both originating from Somalia and Eritrea, indicating that it is relatively prevalent in this population. Autism has not previously been described with mutations in this gene, thus expanding the clinical spectrum of SBCADD.</p
- …