2,325 research outputs found

    Miniestaquia de Eucalyptus benthamii x E. dunnii em substratos a base de casca de arroz carbonizada.

    Get PDF
    Objetivou-se avaliar a viabilidade técnica da utilização de diferentes granulometrias de casca de arroz carbonizada, pura ou em mistura com fibra de coco, substrato comercial a base de casca de pinus e vermiculita como componentes de substratos para produção de mudas de Eucalyptus benthamii x E. dunnii via miniestaquia. Para tanto, foram montados 14 substratos, nos quais as miniestacas foram enraizadas para produção das mudas (60 dias em casa de vegetação, 30 dias em casa de sombra e 30 dias em área de pleno sol). Avaliou-se: 1) a sobrevivência das miniestacas, número de raízes e comprimento da maior raiz na saída da casa de vegetação; 2) a sobrevivência na saída da casa de sombra e; 3) o percentual final de enraizamento após a permanência na área de pleno sol. Com base nos resultados obtidos, conclui-se que a casca de arroz carbonizada pode ser utilizada pura (granulometria de 0,5 a 1 mm e em sua forma íntegra) ou em composição com vermiculita (50%) como substrato para produção de mudas do híbrido em questão via miniestaquia

    Closed shells at drip-line nuclei

    Get PDF
    The shell structure of magic nuclei far from stability is discussed in terms of the self-consistent spherical Hartree-Fock-Bogoliubov theory. In particular, the sensitivity of the shell-gap sizes and the two-neutron separation energies to the choice of particle-hole and particle-particle components of the effective interaction is investigated.Comment: 19 pages, LaTeX, 8 uuencoded figures available upon reques

    Far-Infrared Spectroscopy of the Troposphere: Instrument Description and Calibration Performance

    Get PDF
    The far-infrared spectroscopy of the troposphere (FIRST) instrument is a Fourier transform spectrometer developed to measure the Earth’s thermal emission spectrum with a particular emphasis on far-infrared (far-IR) wavelengths greater than 15 μm. FIRST was developed under NASA’s Instrument Incubator Program to demonstrate technology for providing measurements from 10 to 100 μm (1000 to 100 cm−1) on a single focal plane with a spectral resolution finer than 1 cm−1. Presently no spectrometers in orbit are capable of directly observing the Earth’s far-IR spectrum. This fact, coupled with the fundamental importance of the far-IR to Earth’s climate system, provided the impetus for the development of FIRST. In this paper the FIRST instrument is described and results of a detailed absolute laboratory calibration are presented. Specific channels in FIRST are shown to be accurate in the far-IR to better than 0.3 K at 270 K scene temperature, 0.5 K at 247 K, and 1 K at 225 K. © 2013 Optical Society of Americ

    The clinical utility of testicular cancer risk loci

    Get PDF
    Three recent genome-wide association studies of testicular germ cell tumors have uncovered predisposition alleles in or near several genes, including KITLG, BAK1, SPRY4, TERT, ATF7IP, and DMRT1. The calculated per-allele odds ratio for variants in the region of KITLG is the highest reported for any malignancy so far. These findings are in agreement with epidemiological data indicating that testicular cancer has a higher heritability than most other cancers. Here, we discuss the question of whether the newly identified risk polymorphisms can be used to guide patient care

    Heating in the Accreted Neutron Star Ocean: Implications for Superburst Ignition

    Get PDF
    We perform a self-consistent calculation of the thermal structure in the crust of a superbursting neutron star. In particular, we follow the nucleosynthetic evolution of an accreted fluid element from its deposition into the atmosphere down to a depth where the electron Fermi energy is 20 MeV. We include temperature-dependent continuum electron capture rates and realistic sources of heat loss by thermal neutrino emission from the crust and core. We show that, in contrast to previous calculations, electron captures to excited states and subsequent gamma-emission significantly reduce the local heat loss due to weak-interaction neutrinos. Depending on the initial composition these reactions release up to a factor of 10 times more heat at densities < 10^{11} g/cc than obtained previously. This heating reduces the ignition depth of superbursts. In particular, it reduces the discrepancy noted by Cumming et al. between the temperatures needed for unstable 12C ignition on timescales consistent with observations and the reduction in crust temperature from Cooper pair neutrino emission.Comment: 10 pages, 11 figures, the Astrophysical Journal, in press (scheduled for v. 662). Revised from v1 in response to referee's comment

    The strength of nuclear shell effects at N=126 in the r-process region

    Full text link
    We have investigated nuclear shell effects across the magic number N=126 in the region of the r-process path. Microscopic calculations have been performed using the relativistic Hartree-Bogoliubov approach within the framework of the RMF theory for isotopic chains of rare-earth nuclei in the r-process region. The Lagrangian model NL-SV1 with the inclusion of the vector self-coupling of omega meson has been employed. The RMF results show that the shell effects at N=126 remain strong and exhibit only a slight reduction in the strength in going from the r-process path to the neutron drip line. This is in striking contrast to a systematic weakening of the shell effects at N=82 in the r-process region predicted earlier in the similar approach. In comparison the shell effects with microscopic-macroscopic mass formulae show a near constancy of shell gaps leading to strong shell effects in the region of r-process path to the drip line. A recent analysis of solar-system r-process abundances in a prompt supernova explosion model using various mass formulae including the recently introduced mass tables based upon HFB approach shows that whilst mass formulae with weak shell effects at N=126 give rise to a spread and an overproduction of nuclides near the third abundance peak at A~190, mass tables with droplet models showing stronger shell effects are able to reproduce the abundance features near the third peak appropriately. In comparison, several analyses of the second r-process peak at A~130 have required weakened shell effects at N=82. Our predictions in the RMF theory with NL-SV1, which exhibit weaker shell effects at N=82 and stronger one at N=126 in the r-process region, support the conjecture that a different nature of the shell effects at the magic numbers may be at play in r-process nucleosynthesis of heavy nuclei.Comment: 14 pages, 8 figures; submitted to Physical Review C. Part of this work was presented at Nuclear Physics in Astrophysics II, 20th International Nuclear Physics Divisional Conference of the European Physical Society, at Debrecen, Hungary, May 16-20, 200
    corecore