512 research outputs found

    An intelligent real time 3D vision system for robotic welding tasks

    Get PDF
    MARWIN is a top-level robot control system that has been designed for automatic robot welding tasks. It extracts welding parameters and calculates robot trajectories directly from CAD models which are then verified by real-time 3D scanning and registration. MARWIN's 3D computer vision provides a user-centred robot environment in which a task is specified by the user by simply confirming and/or adjusting suggested parameters and welding sequences. The focus of this paper is on describing a mathematical formulation for fast 3D reconstruction using structured light together with the mechanical design and testing of the 3D vision system and show how such technologies can be exploited in robot welding tasks

    Robot trajectory planning using OLP and structured light 3D machine vision

    Get PDF
    This paper proposes a new methodology for robotic offline programming (OLP) addressing the issue of automatic program generation directly from 3D CAD models and verification through online 3D reconstruction. Limitations of current OLP include manufacturing tolerances between CAD and workpieces and inaccuracies in workpiece placement and modelled work cell. These issues are addressed and demonstrated through surface scanning, registration, and global and local error estimation. The method allows the robot to adjust the welding path designed from the CAD model to the actual workpiece. Alternatively, for non-repetitive tasks and where a CAD model is not available, it is possible to interactively define the path online over the scanned surface

    Gravitational Lensing by Power-Law Mass Distributions: A Fast and Exact Series Approach

    Get PDF
    We present an analytical formulation of gravitational lensing using familiar triaxial power-law mass distributions, where the 3-dimensional mass density is given by ρ(X,Y,Z)=ρ0[1+(Xa)2+(Yb)2+(Zc)2]−Μ/2\rho(X,Y,Z) = \rho_0 [1 + (\frac{X}{a})^2 + (\frac{Y}{b})^2 + (\frac{Z}{c})^2]^{-\nu/2}. The deflection angle and magnification factor are obtained analytically as Fourier series. We give the exact expressions for the deflection angle and magnification factor. The formulae for the deflection angle and magnification factor given in this paper will be useful for numerical studies of observed lens systems. An application of our results to the Einstein Cross can be found in Chae, Turnshek, & Khersonsky (1998). Our series approach can be viewed as a user-friendly and efficient method to calculate lensing properties that is better than the more conventional approaches, e.g., numerical integrations, multipole expansions.Comment: 24 pages, 3 Postscript figures, ApJ in press (October 10th

    Effects of Strong Gravitational Lensing on Millimeter-Wave Galaxy Number Counts

    Full text link
    We study the effects of strong lensing on the observed number counts of mm sources using a ray tracing simulation and two number count models of unlensed sources. We employ a quantitative treatment of maximum attainable magnification factor depending on the physical size of the sources, also accounting for effects of lens halo ellipticity. We calculate predicted number counts and redshift distributions of mm galaxies including the effects of strong lensing and compare with the recent source count measurements of the South Pole Telescope (SPT). The predictions have large uncertainties, especially the details of the mass distribution in lens galaxies and the finite extent of sources, but the SPT observations are in good agreement with predictions. The sources detected by SPT are predicted to largely consist of strongly lensed galaxies at z>2. The typical magnifications of these sources strongly depends on both the assumed unlensed source counts and the flux of the observed sources

    CFHT AO Imaging of the CLASS Gravitational Lens System B1359+154

    Get PDF
    We present adaptive optics imaging of the CLASS gravitational lens system B1359+154 obtained with the Canada-France-Hawaii Telescope (CFHT) in the infrared K band. The observations show at least three brightness peaks within the ring of lensed images, which we identify as emission from multiple lensing galaxies. The results confirm the suspected compound nature of the lens, as deduced from preliminary mass modeling. The detection of several additional nearby galaxies suggests that B1359+154 is lensed by the compact core of a small galaxy group. We attempted to produce an updated lens model based on the CFHT observations and new 5-GHz radio data obtained with the MERLIN array, but there are too few constraints to construct a realistic model at this time. The uncertainties inherent with modeling compound lenses make B1359+154 a challenging target for Hubble constant determination through the measurement of differential time delays. However, time delays will offer additional constraints to help pin down the mass model. This lens system therefore presents a unique opportunity to directly measure the mass distribution of a galaxy group at intermediate redshift.Comment: 12 pages including 3 figures; ApJL accepte

    A New Einstein Cross: A Highly Magnified, Intrinsically Faint Lyman-Alpha Emitter at z=2.7

    Get PDF
    We report the discovery of a new Einstein cross at redshift z_S = 2.701 based on Lyman-alpha emission in a cruciform configuration around an SDSS luminous red galaxy (z_L = 0.331). The system was targeted as a possible lens based on an anomalous emission line in the SDSS spectrum. Imaging and spectroscopy from the W. M. Keck Observatory confirm the lensing nature of this system. This is one of the widest-separation galaxy-scale lenses known, with an Einstein radius of ~1.84 arcsec. We present simple gravitational lens models for the system and compute the intrinsic properties of the lensed galaxy. The total mass of the lensing galaxy within the 8.8 +/- 0.1 kpc enclosed by the lensed images is (5.2 +/- 0.1) x 10^11 M_sun. The lensed galaxy is a low mass galaxy (0.2 L*) with a high equivalent-width Lyman-alpha line (EW_Lya_rest = 46 +/- 5 Angstroms). Follow-up studies of this lens system can probe the mass structure of the lensing galaxy, and can provide a unique view of an intrinsically faint, high-redshift, star-forming galaxy at high signal-to-noise ratio.Comment: ApJ Letters, in pres

    CX3CR1 Polymorphisms are associated with atopy but not asthma in German children

    Get PDF
    Chemokines and their receptors are involved in many aspects of immunity. Chemokine CX3CL1, acting via its receptor CX3CR1, regulates monocyte migration and macrophage differentiation as well as T cell-dependent inflammation. Two common, nonsynonymous polymorphisms in CX3CR1 have previously been shown to alter the function of the CX3CL1/CX3CR1 pathway and were suggested to modify the risk for asthma. Using matrix-assisted laser desorption/ionization time-of-flight technology, we genotyped polymorphisms Val249Ile and Thr280Met in a cross-sectional population of German children from Munich (n = 1,159) and Dresden ( n = 1,940). For 249Ile an odds ratio of 0.77 (95% confidence interval 0.63-0.96; p = 0.017) and for 280Met an odds ratio of 0.71 ( 95% confidence interval 0.56-0.89; p = 0.004) were found with atopy in Dresden but not in Munich. Neither polymorphism was associated with asthma. Thus, amino acid changes in CX3CR1 may influence the development of atopy but not asthma in German children. Potentially, other factors such as environmental effects may modify the role of CX3CR1 polymorphisms. Copyright (c) 2007 S. Karger AG, Basel

    Analytic Time Delays and H_0 Estimates for Gravitational Lenses

    Get PDF
    We study gravitational lens time delays for a general family of lensing potentials, which includes the popular singular isothermal elliptical potential and singular isothermal elliptical density distribution but allows general angular structure. Using a novel approach, we show that the time delay can be cast in a very simple form, depending only on the observed image positions. Including an external shear changes the time delay proportional to the shear strength, and varying the radial profile of the potential changes the time delay approximately linearly. These analytic results can be used to obtain simple estimates of the time delay and the Hubble constant in observed gravitational lenses. The naive estimates for four of five time delay lenses show surprising agreement with each other and with local measurements of H_0; the complicated Q 0957+561 system is the only outlier. The agreement suggests that it is reasonable to use simple isothermal lens models to infer H_0, although it is still important to check this conclusion by examining detailed models and by measuring more lensing time delays.Comment: 16 pages with 2 embedded figures; submitted to Ap

    New Modeling of the Lensing Galaxy and Cluster of Q0957+561: Implications for the Global Value of the Hubble Constant

    Get PDF
    The gravitational lens 0957+561 is modeled utilizing recent observations of the galaxy and the cluster as well as previous VLBI radio data which have been re-analyzed recently. The galaxy is modeled by a power-law elliptical mass density with a small core while the cluster is modeled by a non-singular power-law sphere as indicated by recent observations. Using all of the current available data, the best-fit model has a reduced chi-squared of approximately 6 where the chi-squared value is dominated by a small portion of the observational constraints used; this value of the reduced chi-squared is similar to that of the recent FGSE best-fit model by Barkana et al. However, the derived value of the Hubble constant is significantly different from the value derived from the FGSE model. We find that the value of the Hubble constant is given by H_0 = 69 +18/-12 (1-K) and 74 +18/-17 (1-K) km/s/Mpc with and without a constraint on the cluster's mass, respectively, where K is the convergence of the cluster at the position of the galaxy and the range for each value is defined by Delta chi-squared = reduced chi-squared. Presently, the best achievable fit for this system is not as good as for PG 1115+080, which also has recently been used to constrain the Hubble constant, and the degeneracy is large. Possibilities for improving the fit and reducing the degeneracy are discussed.Comment: 22 pages in aaspp style including 6 tables and 5 figures, ApJ in press (Nov. 1st issue
    • 

    corecore