121 research outputs found

    Misfits in Skyrme-Hartree-Fock

    Full text link
    We address very briefly five critical points in the context of the Skyrme-Hartree-Fock (SHF) scheme: 1) the impossibility to consider it as an interaction, 2) a possible inconsistency of correlation corrections as, e.g., the center-of-mass correction, 3) problems to describe the giant dipole resonance (GDR) simultaneously in light and heavy nuclei, 4) deficiencies in the extrapolation of binding energies to super-heavy elements (SHE), and 5) a yet inappropriate trend in fission life-times when going to the heaviest SHE. While the first two points have more a formal bias, the other three points have practical implications and wait for solution.Comment: 9 pages, 4 figure

    The Skyrme energy functional and low lying 2+ states in Sn, Cd and Te isotopes

    Full text link
    We study the predictive power of Skyrme forces with respect to low lying quadrupole spectra along the chains of Sn, Cd, and Te isotopes. Excitation energies and B(E2) values for the lowest quadrupole states are computed from a collective Schroedinger equation which as deduced through collective path generated by constraint Skyrme-Hartree-Fock (SHF) plus self-consistent cranking for the dynamical response. We compare the results from four different Skyrme forces, all treated with two different pairing forces (volume versus density-dependent pairing). The region around the neutron shell closure N=82 is very sensitive to changes in the Skyrme while the mid-shell isotopes in the region N<82 depend mainly on the adjustment of pairing. The neutron rich isotopes are most sensitive and depend on both aspects

    Optimization of relativistic mean field model for finite nuclei to neutron star matter

    Full text link
    We have optimized the parameters of extended relativistic mean-field model using a selected set of global observables which includes binding energies and charge radii for nuclei along several isotopic and isotonic chains and the iso-scalar giant monopole resonance energies for the 90^{90}Zr and 208^{208}Pb nuclei. The model parameters are further constrained by the available informations on the energy per neutron for the dilute neutron matter and bounds on the equations of state of the symmetric and asymmetric nuclear matter at supra-nuclear densities. Two new parameter sets BSP and IUFSU* are obtained, later one being the variant of recently proposed IUFSU parameter set. The BSP parametrization uses the contributions from the quartic order cross-coupling between ω\omega and σ\sigma mesons to model the high density behaviour of the equation of state instead of the ω\omega meson self-coupling as in the case of IUFSU* or IUFSU. Our parameter sets yield appreciable improvements in the binding energy systematics and the equation of state for the dilute neutron matter. The importance of the quartic order ωσ\omega-\sigma cross coupling term of the extended RMF model, as often ignored, is realized.Comment: 22 pages, 11 figures, Nucl. Phys. A (in press

    Oxygenated compounds in aged biomass burning plumes over the Eastern Mediterranean: evidence for strong secondary production of methanol and acetone

    No full text
    International audienceAirborne measurements of acetone, methanol, PAN, acetonitrile (by Proton Transfer Reaction Mass Spectrometry), and CO (by Tunable Diode Laser Absorption Spectroscopy) have been performed during the Mediterranean Intensive Oxidants Study (MINOS August 2001). We have identified ten biomass burning plumes from strongly elevated acetonitrile mixing ratios. The characteristic biomass burning signatures obtained from these plumes reveal secondary production of acetone and methanol, while CO photochemically declines in the plumes. Mean excess mixing ratios - normalized to CO - of 1.8%, 0.20%, 3.8%, and 0.65% for acetone, acetonitrile, methanol, and PAN, respectively, were found. By scaling to an assumed global annual source of 663-807Tg CO, biomass burning emissions of 25-31 and 29-35 Tg/yr for acetone and methanol are estimated, respectively. Our measurements suggest that the present biomass burning contributions of acetone and methanol are significantly underestimated due to the neglect of secondary formation within the plume. Median acetonitrile mixing ratios throughout the troposphere were around 150pmol/mol, in accord with current biomass burning inventories and an atmospheric lifetime of ~6 months

    Properties of odd nuclei and the impact of time-odd mean fields: A systematic Skyrme-Hartree-Fock analysis

    Get PDF
    We present a systematic analysis of the description of odd nuclei by the Skyrme-Hartree-Fock approach augmented with pairing in BCS approximation and blocking of the odd nucleon. Current and spin densities in the Skyrme functional produce time-odd mean fields (TOMF) for odd nuclei. Their effect on basic properties (binding energies, odd-even staggering, separation energies and spectra) is investigated for the three Skyrme parameterizations SkI3, SLy6, and SV-bas. About 1300 spherical and axially-deformed odd nuclei with 16 < Z < 92 are considered. The calculations demonstrate that the TOMF effect is generally small, although not fully negligible. The influence of the Skyrme parameterization and the consistency of the calculations are much more important. With a proper choice of the parameterization, a good description of binding energies and their differences is obtained, comparable to that for even nuclei. The description of low-energy excitation spectra of odd nuclei is of varying quality depending on the nucleus

    The two-proton shell gap in Sn isotopes

    Full text link
    We present an analysis of two-proton shell gaps in Sn isotopes. As the theoretical tool we use self-consistent mean-field models, namely the relativistic mean-field model and the Skyrme-Hartree-Fock approach, both with two different pairing forces, a delta interaction (DI) model and a density-dependent delta interaction (DDDI). We investigate the influence of nuclear deformation as well as collective correlations and find that both effects contribute significantly. Moreover, we find a further significant dependence on the pairing force used. The inclusion of deformation plus correlation effects and the use of DDDI pairing provides agreement with the data.Comment: gzipped tar archiv containing LaTeX source, bibliography file (*.bbl), all figures as *.eps, and the style file

    Ozone production and trace gas correlations during the June 2000 MINATROC intensive measurement campaign at Mt. Cimone

    Get PDF
    An intensive measurement campaign was performed in June 2000 at the Mt. Cimone station (44°11' N-10°42' E, 2165 m asl, the highest mountain in the northern Italian Apennines) to study photochemical ozone production in the lower free troposphere. In general, average mixing ratios of important trace gases were not very high (121 ± 20 ppbv CO, 0.284 ± 0.220 ppbv NOx, 1.15 ± 0.8 ppbv NOy, 58 ± 9 ppbv O<sub>3</sub>), which indicates a small contribution by local pollution. Those trace gas levels are representative of continental background air, which is further supported by the analysis of VOCs (e.g.: C<sub>2</sub>H<sub>6</sub> = (905 ± 200) pptv, C<sub>3</sub>H<sub>8</sub> = (268 ±110) pptv, C<sub>2</sub>H<sub>2</sub> = (201 ± 102) pptv, C<sub>5</sub>H<sub>8</sub> = (111 ± 124) pptv, benzene = (65 ± 33) pptv). Furthermore, significant diurnal variations for a number of trace gases (O<sub>3</sub>, CO, NOx, NOy, HCHO) indicate the presence of free tropospheric airmasses at nighttime as a consequence of local catabatic winds. Average mid-day peroxy radical concentrations at Mt. Cimone are of the order of 30 pptv. At mean NO concentrations of the order of 40 pptv this gives rise to significant in situ net O<sub>3</sub> production of 0.1-0.3 ppbv/hr. The importance of O<sub>3 </sub>production is supported by correlations between O<sub>3</sub>, CO, NOz, and HCHO, and between HCHO, CO and NOy

    Systematics of collective correlation energies from self-consistent mean-field calculations

    Full text link
    The collective ground-state correlations stemming from low-lying quadrupole excitations are computed microscopically. To that end, the self-consistent mean-field model is employed on the basis of the Skyrme-Hartre-Fock (SHF) functional augmented by BCS pairing. The microscopic-macroscopic mapping is achieved by quadrupole-constrained mean-field calculations which are processed further in the generator-coordinate method (GCM) at the level of the Gaussian overlap approximation (GOA). We study the correlation effects on energy, charge radii, and surface thickness for a great variety of semi-magic nuclei. A key issue is to work out the influence of variations of the SHF functional. We find that collective ground-state correlations (GSC) are robust under change of nuclear bulk properties (e.g., effective mass, symmetry energy) or of spin-orbit coupling. Some dependence on the pairing strength is observed. This, however, does not change the general conclusion that collective GSC obey a general pattern and that their magnitudes are rather independent of the actual SHF parameters.Comment: 13 pages, 13 figure
    corecore