3,554 research outputs found

    Thermodynamic analysis of turbulent combustion in a spark ignition engine. Experimental evidence

    Get PDF
    A method independent of physical modeling assumptions is presented to analyze high speed flame photography and cylinder pressure measurements from a transparent piston spark ignition research engine. The method involves defining characteristic quantities of the phenomena of flame propagation and combustion, and estimating their values from the experimental information. Using only the pressure information, the mass fraction curves are examined. An empirical burning law is presented which simulates such curves. Statistical data for the characteristics delay and burning angles which show that cycle to cycle fractional variations are of the same order of magnitude for both angles are discussed. The enflamed and burnt mass fractions are compared as are the rates of entrainment and burning

    Combustion and operating characteristics of spark-ignition engines

    Get PDF
    The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined

    College Meets Community with Rebecca Twitchell

    Get PDF
    https://digitalcommons.providence.edu/psp470_2023/1007/thumbnail.jp

    Quantitative imaging of the 3-D distribution of cation adsorption sites in undisturbed soil

    Get PDF
    Several studies have shown that the distribution of cation adsorption sites (CASs) is patchy at a millimetre to centimetre scale. Often, larger concentrations of CASs in biopores or aggregate coatings have been reported in the literature. This heterogeneity has implications on the accessibility of CASs and may influence the performance of soil system models that assume a spatially homogeneous distribution of CASs. In this study, we present a new method to quantify the abundance and 3-D distribution of CASs in undisturbed soil that allows for investigating CAS densities with distance to the soil macropores. We used X-ray imaging with Ba<sup>2+</sup> as a contrast agent. Ba<sup>2+</sup> has a high adsorption affinity to CASs and is widely used as an index cation to measure the cation exchange capacity (CEC). Eight soil cores (approx. 10 cm<sup>3</sup>) were sampled from three locations with contrasting texture and organic matter contents. The CASs of our samples were saturated with Ba<sup>2+</sup> in the laboratory using BaCl<sub>2</sub> (0.3 mol L<sup>−1</sup>). Afterwards, KCl (0.1 mol L<sup>−1</sup>) was used to rinse out Ba<sup>2+</sup> ions that were not bound to CASs. Before and after this process the samples were scanned using an industrial X-ray scanner. Ba<sup>2+</sup> bound to CASs was then visualized in 3-D by the difference image technique. The resulting difference images were interpreted as depicting the Ba<sup>2+</sup> bound to CASs only. The X-ray image-derived CEC correlated significantly with results of the commonly used ammonium acetate method to determine CEC in well-mixed samples. The CEC of organic-matter-rich samples seemed to be systematically overestimated and in the case of the clay-rich samples with less organic matter the CEC seemed to be systematically underestimated. The results showed that the distribution of the CASs varied spatially within most of our samples down to a millimetre scale. There was no systematic relation between the location of CASs and the soil macropore structure. We are convinced that the approach proposed here will strongly aid the development of more realistic soil system models

    Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting.

    Get PDF
    Cichlid fishes are a key model system in the study of adaptive radiation, speciation and evolutionary developmental biology. More than 1600 cichlid species inhabit freshwater and marginal marine environments across several southern landmasses. This distributional pattern, combined with parallels between cichlid phylogeny and sequences of Mesozoic continental rifting, has led to the widely accepted hypothesis that cichlids are an ancient group whose major biogeographic patterns arose from Gondwanan vicariance. Although the Early Cretaceous (ca 135 Ma) divergence of living cichlids demanded by the vicariance model now represents a key calibration for teleost molecular clocks, this putative split pre-dates the oldest cichlid fossils by nearly 90 Myr. Here, we provide independent palaeontological and relaxed-molecular-clock estimates for the time of cichlid origin that collectively reject the antiquity of the group required by the Gondwanan vicariance scenario. The distribution of cichlid fossil horizons, the age of stratigraphically consistent outgroup lineages to cichlids and relaxed-clock analysis of a DNA sequence dataset consisting of 10 nuclear genes all deliver overlapping estimates for crown cichlid origin centred on the Palaeocene (ca 65-57 Ma), substantially post-dating the tectonic fragmentation of Gondwana. Our results provide a revised macroevolutionary time scale for cichlids, imply a role for dispersal in generating the observed geographical distribution of this important model clade and add to a growing debate that questions the dominance of the vicariance paradigm of historical biogeography

    Action-derived molecular dynamics in the study of rare events

    Full text link
    We present a practical method to generate classical trajectories with fixed initial and final boundary conditions. Our method is based on the minimization of a suitably defined discretized action. The method finds its most natural application in the study of rare events. Its capabilities are illustrated by non-trivial examples. The algorithm lends itself to straightforward parallelization, and when combined with molecular dynamics (MD) it promises to offer a powerful tool for the study of chemical reactions.Comment: 7 Pages, 4 Figures (3 in color), submitted to Phys. Rev. Let

    MH2 ECONOMIC AND CLINICAL CONSEQUENCES ASSOCIATED WITH POTENTIAL DRUG-DRUG INTERACTIONS BETWEEN ANTIPSYCHOTICS AND CONCOMITANT MEDICATIONS IN PATIENTS WITH SCHIZOPHRENIA

    Get PDF

    Quantitative imaging of the 3-D distribution of cation adsorption sites in undisturbed soil

    Get PDF
    Several studies have shown that the distribution of cation adsorption sites (CASs) is patchy at a millimetre to centimetre scale. Often, larger concentrations of CASs in biopores or aggregate coatings have been reported in the literature. This heterogeneity has implications on the accessibility of CASs and may influence the performance of soil system models that assume a spatially homogeneous distribution of CASs. In this study, we present a new method to quantify the abundance and 3-D distribution of CASs in undisturbed soil that allows for investigating CAS densities with distance to the soil macropores. We used X-ray imaging with Ba2+ as a contrast agent. Ba2+ has a high adsorption affinity to CASs and is widely used as an index cation to measure the cation exchange capacity (CEC). Eight soil cores (approx. 10 cm3 ) were sampled from three locations with contrasting texture and organic matter contents. The CASs of our samples were saturated with Ba2+ in the laboratory using BaCl2 (0.3 mol L−1). Afterwards, KCl (0.1 mol L−1) was used to rinse out Ba2+ ions that were not bound to CASs. Before and after this process the samples were scanned using an industrial X-ray scanner. Ba2+ bound to CASs was then visualized in 3-D by the difference image technique. The resulting difference images were interpreted as depicting the Ba2+ bound to CASs only. The X-ray image-derived CEC correlated significantly with results of the commonly used ammonium acetate method to determine CEC in well-mixed samples. The CEC of organic-matter-rich samples seemed to be systematically overestimated and in the case of the clay-rich samples with less organic matter the CEC seemed to be systematically underestimated. The results showed that the distribution of the CASs varied spatially within most of our samples down to a millimetre scale. There was no systematic relation between the location of CASs and the soil macropore structure. We are convinced that the approach proposed here will strongly aid the development of more realistic soil system models
    • …
    corecore