4 research outputs found

    INDIAN INLAND WATER AND PARTS OF ANTARCTIC ICE SHEET ELEVATION AND ICE SHEET VELOCITY MONITORING USING ALTIMETRY AND SAR BASED DATASETS

    Get PDF
    The monitoring of inland water and continental ice sheets is very important from water management and global climate related studies. The current study utilizes the SGDR data from Saral-Altika during 2013–2017 to estimate and monitor water level in 24 major reservoirs of India. The R2 value for majority of reservoirs was more than 0.99 and RMSE error value also was less than 0.40 m. In addition, wide rivers of India such as Mahanadi River, was also monitored using Altika data covering part of Mahanadi River from Khairmal to Naraj gauging sites during 2013–2016 time period. One dimensional hydro-dynamic (1D-HD) model was setup for this part of river to generate river Discharge at virtual gauge. The part of Antarctic ice sheet South of Indian research station Maitri, East Antarctica, was studied for ice sheet elevation changes using ground based stake network as well as space based altimeter/LIDAR datasets during 2003–2017 time period. 2003–2009 time was used for getting elevation changes using Icesat-1 level 2 altimetry product, and Geophysical Data Record (GDR) data from Altika was used with slope correction from 2013–2016 time period. An extensive network of ground based stake networks were used for validating the derived elevation changes. The ice sheet and glacier line of site velocity was estimated using Sentinel-1 based InSAR data with 6 to 12 day time interval data sets for year 2016 and 2017. The derived glacier velocity was comparable with optical image (Landsat-8) based glacier velocity for same year and also with historical Radarsat-1 based glacier velocity results

    Water level status of Indian reservoirs: a synoptic view from altimeter observations

    No full text
    Most of the part of India is already under water-stressed condition. In this regard, the continuous monitoring of the water levels (WL) and storage capacity of reservoirs, lakes, and rivers is very important for the estimation and utilization of water resources effectively. The long term ground observed WL of many of the water bodies is not easily available, which may be very critical for proper water resources management. Satellite radar altimetry is the remote sensing technique, which is being used to study sea surface height for the last three decades. The advancement in radar technology with time has provided the opportunity to exploit the technique to retrieve the WL of inland water bodies. In the current study, an attempt has been made to generate long term time series on WL of around 29 geometrically complicated inland water bodies in India. These water bodies are mainly large reservoirs namely Ban Sagar, Balimela, Bargi, Bhakra, Gandhi Sagar, Hasdeo, Indravati, Jalaput, Kadana, Kolab, Mahi Bajaj, Maithon, Massanjore, Pong, Ramganga, Ranapratap Sagar, Rihand, Sardar Sarovar, Shivaji Sagar, Tilaiya, Ujjani, and Ukai. The WL of these water bodies was retrieved for around two decades using the European Remote-Sensing Satellite – 2 (ERS-2), ENVISAT Radar Altimeter – 2 (ENVISAT RA-2), and Saral-AltiKa altimeters data through Ice-1 retracking algorithm. Further, an attempt has also been made to estimate the WL of gauged/ungauged lakes namely Mansarovar, Pangong, Chilika, Bhopal, and Rann of Kutch over which Saral-AltiKa pass was there. As after July 2016, the SARAL-AltiKa is operating in the drifting orbit, systematic repeated observation of WL data of all reservoirs was not possible. The data of drifted tracks of Saral-AltiKa were tested for WL estimation of Ban Sagar reservoir. As the ERS-2, ENVISAT RA-2 and Saral-AltiKa all were having almost the same passing tracks, a long term WL series of these lakes could be generated from 1997 to 2016. However, at present only Sentinel – 3 is in orbit, the continuous altimeter based WL monitoring of some of these reservoirs (Gandhi Sagar, Nathsagar, Ranapratap, Ujjani, and Ukai) was attempted through Sentinel-3A satellite data from 2016 to 2018. The accuracy of the retrieved WL was than validated against the observed WL. In most of the reservoirs, a systematic bias was found due to the different characteristics and geoid height of each reservoir. The coefficient of determination, R2 , value for a majority of reser voirs was as good as 0.9. In the case of ERS-2, the values of R2 varied for 0.44–0.97 with root mean square error (RMSE) in the range of 0.63–2.72 m. These statistics improved with the ENVISAT RA-2 data analysis, the R2 value reached more than 0.90 for around 11 reservoirs. The highest, 0.99, for Hasdeo and Shivaji Sagar Reservoirs with RMSE of 0.44 and 0.56, respectively. Further, the accuracy improved with the analysis of Saral-AltiKa data. The R2 was always more than 0.9 for each reservoir and the lowest RMSE reduced to 0.03. Therefore, it can be said that the accuracy and consistency of WL retrieval through satellite altimetry has improved with time. Furthermore, the altimeter based retrieved WL may be used in hydrological studies and can contribute to better water resources management

    Water level status of Indian reservoirs: A synoptic view from altimeter observations

    No full text
    International audienceMost of the part of India is already under water-stressed condition. In this regard, the continuous monitoring of the water levels (WL) and storage capacity of reservoirs, lakes, and rivers is very important for the estimation and utilization of water resources effectively. The long term ground observed WL of many of the water bodies is not easily available, which may be very critical for proper water resources management. Satellite radar altimetry is the remote sensing technique, which is being used to study sea surface height for the last three decades. The advancement in radar technology with time has provided the opportunity to exploit the technique to retrieve the WL of inland water bodies. In the current study, an attempt has been made to generate long term time series on WL of around 29 geometrically complicated inland water bodies in India. These water bodies are mainly large reservoirs namely Ban Sagar, Balimela, Bargi, Bhakra, Gandhi Sagar, Hasdeo, Indravati, Jalaput, Kadana, Kolab, Mahi Bajaj, Maithon, Massanjore, Pong, Ramganga, Ranapratap Sagar, Rihand, Sardar Sarovar, Shivaji Sagar, Tilaiya, Ujjani, and Ukai. The WL of these water bodies was retrieved for around two decades using the European Remote-Sensing Satellite - 2 (ERS-2), ENVISAT Radar Altimeter - 2 (ENVISAT RA-2), and Saral-AltiKa altimeters data through Ice-1 retracking algorithm. Further, an attempt has also been made to estimate the WL of gauged/ungauged lakes namely Mansarovar, Pangong, Chilika, Bhopal, and Rann of Kutch over which Saral-AltiKa pass was there. As after July 2016, the SARAL-AltiKa is operating in the drifting orbit, systematic repeated observation of WL data of all reservoirs was not possible. The data of drifted tracks of Saral-AltiKa were tested for WL estimation of Ban Sagar reservoir. As the ERS-2, ENVISAT RA-2 and Saral-AltiKa all were having almost the same passing tracks, a long term WL series of these lakes could be generated from 1997 to 2016. However, at present only Sentinel - 3 is in orbit, the continuous altimeter based WL monitoring of some of these reservoirs (Gandhi Sagar, Nathsagar, Ranapratap, Ujjani, and Ukai) was attempted through Sentinel-3A satellite data from 2016 to 2018. The accuracy of the retrieved WL was than validated against the observed WL. In most of the reservoirs, a systematic bias was found due to the different characteristics and geoid height of each reservoir. The coefficient of determination, R2, value for a majority of reservoirs was as good as 0.9. In the case of ERS-2, the values of R2 varied for 0.44-0.97 with root mean square error (RMSE) in the range of 0.63-2.72 m. These statistics improved with the ENVISAT RA-2 data analysis, the R2 value reached more than 0.90 for around 11 reservoirs. The highest, 0.99, for Hasdeo and Shivaji Sagar Reservoirs with RMSE of 0.44 and 0.56, respectively. Further, the accuracy improved with the analysis of Saral-AltiKa data. The R2 was always more than 0.9 for each reservoir and the lowest RMSE reduced to 0.03. Therefore, it can be said that the accuracy and consistency of WL retrieval through satellite altimetry has improved with time. Furthermore, the altimeter based retrieved WL may be used in hydrological studies and can contribute to better water resources management
    corecore