20 research outputs found

    Multiscale - Patient-Specific Artery and Atherogenesis Models

    Get PDF
    In this work, we present a platform for the development of multiscale patient-specific artery and atherogenesis models. The platform, called ARTool, integrates technologies of 3-D image reconstruction from various image modalities, blood flow and biological models of mass transfer, plaque characterization, and plaque growth. Patient images are acquired for the development of the 3-D model of the patient specific arteries. Then, blood flow ismodeled within the arterial models for the calculation of the wall shear stress distribution (WSS). WSS is combined with other patient-specific parameters for the development of the plaque progression models. Real-time simulation can be performed for same cases in grid environment. The platform is evaluated using both animal and human data

    Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors

    Get PDF
    Patient-specific computational modeling of subendothelial LDL accumulation in a stenosed right coronary artery: effect of hemodynamic and biological factors. Am J Physiol Heart Circ Physiol 304: H1455-H1470, 2013. First published March 15, 2013; doi:10.1152/ajpheart.00539.2012.-Atherosclerosis is a systemic disease with local manifestations. Low-density lipoprotein (LDL) accumulation in the subendothelial layer is one of the hallmarks of atherosclerosis onset and ignites plaque development and progression. Blood flow-induced endothelial shear stress (ESS) is causally related to the heterogenic distribution of atherosclerotic lesions and critically affects LDL deposition in the vessel wall. In this work we modeled blood flow and LDL transport in the coronary arterial wall and investigated the influence of several hemodynamic and biological factors that may regulate LDL accumulation. We used a three-dimensional model of a stenosed right coronary artery reconstructed from angiographic and intravascular ultrasound patient data. We also reconstructed a second model after restoring the patency of the stenosed lumen to its nondiseased state to assess the effect of the stenosis on LDL accumulation

    Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography - comparison and registration with IVUS

    Get PDF
    BACKGROUND: The aim of this study is to present a new methodology for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography Angiography (CTA). METHODS: The methodology is summarized in six stages: 1) pre-processing of the initial raw images, 2) rough estimation of the lumen and outer vessel wall borders and approximation of the vessel’s centerline, 3) manual adaptation of plaque parameters, 4) accurate extraction of the luminal centerline, 5) detection of the lumen - outer vessel wall borders and calcium plaque region, and 6) finally 3D surface construction. RESULTS: The methodology was compared to the estimations of a recently presented Intravascular Ultrasound (IVUS) plaque characterization method. The correlation coefficients for calcium volume, surface area, length and angle vessel were 0.79, 0.86, 0.95 and 0.88, respectively. Additionally, when comparing the inner and outer vessel wall volumes of the reconstructed arteries produced by IVUS and CTA the observed correlation was 0.87 and 0.83, respectively. CONCLUSIONS: The results indicated that the proposed methodology is fast and accurate and thus it is likely in the future to have applications in research and clinical arena

    Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography – comparison and registration with IVUS

    Get PDF
    BACKGROUND: The aim of this study is to present a new methodology for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography Angiography (CTA). METHODS: The methodology is summarized in six stages: 1) pre-processing of the initial raw images, 2) rough estimation of the lumen and outer vessel wall borders and approximation of the vessel’s centerline, 3) manual adaptation of plaque parameters, 4) accurate extraction of the luminal centerline, 5) detection of the lumen - outer vessel wall borders and calcium plaque region, and 6) finally 3D surface construction. RESULTS: The methodology was compared to the estimations of a recently presented Intravascular Ultrasound (IVUS) plaque characterization method. The correlation coefficients for calcium volume, surface area, length and angle vessel were 0.79, 0.86, 0.95 and 0.88, respectively. Additionally, when comparing the inner and outer vessel wall volumes of the reconstructed arteries produced by IVUS and CTA the observed correlation was 0.87 and 0.83, respectively. CONCLUSIONS: The results indicated that the proposed methodology is fast and accurate and thus it is likely in the future to have applications in research and clinical arena

    A deep learning oriented method for automated 3D reconstruction of carotid arterial trees from MR imaging

    Full text link
    The scope of this paper is to present a new carotid vessel segmentation algorithm implementing the U-net based convolutional neural network architecture. With carotid atherosclerosis being the major cause of stroke in Europe, new methods that can provide more accurate image segmentation of the carotid arterial tree and plaque tissue can help improve early diagnosis, prevention and treatment of carotid disease. Herein, we present a novel methodology combining the U-net model and morphological active contours in an iterative framework that accurately segments the carotid lumen and outer wall. The method automatically produces a 3D meshed model of the carotid bifurcation and smaller branches, using multispectral MR image series obtained from two clinical centres of the TAXINOMISIS study. As indicated by a validation study, the algorithm succeeds high accuracy (99.1% for lumen area and 92.6% for the perimeter) for lumen segmentation. The proposed algorithm will be used in the TAXINOMISIS study to obtain more accurate 3D vessel models for improved computational fluid dynamics simulations and the development of models of atherosclerotic plaque progression

    Patient-Specific Simulation of Coronary Artery Pressure Measurements: An In Vivo Three-Dimensional Validation Study in Humans

    Get PDF
    Pressure measurements using finite element computations without the need of a wire could be valuable in clinical practice. Our aim was to compare the computed distal coronary pressure values with the measured values using a pressure wire, while testing the effect of different boundary conditions for the simulation. Eight coronary arteries (lumen and outer vessel wall) from six patients were reconstructed in three-dimensional (3D) space using intravascular ultrasound and biplane angiographic images. Pressure values at the distal and proximal end of the vessel and flow velocity values at the distal end were acquired with the use of a combo pressure-flow wire. The 3D lumen and wall models were discretized into finite elements; fluid structure interaction (FSI) and rigid wall simulations were performed for one cardiac cycle both with pulsatile and steady flow in separate simulations. The results showed a high correlation between the measured and the computed coronary pressure values (coefficient of determination [r2] ranging between 0.8902 and 0.9961), while the less demanding simulations using steady flow and rigid walls resulted in very small relative error. Our study demonstrates that computational assessment of coronary pressure is feasible and seems to be accurate compared to the wire-based measurements

    Noninvasive CT-based hemodynamic assessment of coronary lesions derived from fast computational analysis: a comparison against fractional flow reserve

    No full text
    Objectives: Application of computational fluid dynamics (CFD) to three-dimensional CTCA datasets has been shown to provide accurate assessment of the hemodynamic significance of a coronary lesion. We aim to test the feasibility of calculating a novel CTCA-based virtual functional assessment index (vFAI) of coronary stenoses > 30% and ≤ 90% by using an automated in-house-developed software and to evaluate its efficacy as compared to the invasively measured fractional flow reserve (FFR). Methods and results: In 63 patients with chest pain symptoms and intermediate (20–90%) pre-test likelihood of coronary artery disease undergoing CTCA and invasive coronary angiography with FFR measurement, vFAI calculations were performed after 3D reconstruction of the coronary vessels and flow simulations using the finite element method. A total of 74 vessels were analyzed. Mean CTCA processing time was 25(± 10) min. There was a strong correlation between vFAI and FFR, (R = 0.93, p < 0.001) and a very good agreement between the two parameters by the Bland–Altman method of analysis. The mean difference of measurements from the two methods was 0.03 (SD = 0.033), indicating a small systematic overestimation of the FFR by vFAI. Using a receiver-operating characteristic curve analysis, the optimal vFAI cutoff value for identifying an FFR threshold of ≤ 0.8 was ≤ 0.82 (95% CI 0.81 to 0.88). Conclusions: vFAI can be effectively derived from the application of computational fluid dynamics to three-dimensional CTCA datasets. In patients with coronary stenosis severity > 30% and ≤ 90%, vFAI performs well against FFR and may efficiently distinguish between hemodynamically significant from non-significant lesions. Key Points: Virtual functional assessment index (vFAI) can be effectively derived from 3D CTCA datasets.In patients with coronary stenoses severity > 30% and ≤ 90%, vFAI performs well against FFR.vFAI may efficiently distinguish between functionally significant from non-significant lesions
    corecore