547 research outputs found

    Evaluation of Noise Radiation Mechanisms in Turbulent Jets

    Get PDF
    Data from the direct numerical simulation (DNS) of a turbulent, compressible (Mach = 1.92) jet has been analyzed to investigate the process of sound generation. The overall goals are to understand how the different scales of turbulence contribute to the acoustic field, and to understand the role that linear instability waves play in the noise produced by supersonic turbulent jets. Lighthill’s acoustic analogy was used to predict the radiate sound from turbulent source terms computed from the DNS data. Preliminary computations (for the axisymmetric mode of the acoustic field) showgood agreement between the acoustic field determined from DNS and acoustic analogy. Further work is needed to refine the calculations and investigate the source terms. Work was also begun to test the validity of linear stability wave models of sound generation in supersonic jets. An adjoint-based method was developed to project the DNS data onto the most unstable linear stability mode at different streamwise positions. This will allow the evolution of the wave and its radiated acoustic field, determined by solving the linear equations, to be compared directly with the evolution of the near and far-field fluctuations in the DNS

    A Regularization of Burgers Equation using a Filtered Convective Velocity

    Full text link
    This paper examines the properties of a regularization of Burgers equation in one and multiple dimensions using a filtered convective velocity, which we have dubbed as convectively filtered Burgers (CFB) equation. A physical motivation behind the filtering technique is presented. An existence and uniqueness theorem for multiple dimensions and a general class of filters is proven. Multiple invariants of motion are found for the CFB equation and are compared with those found in viscous and inviscid Burgers equation. Traveling wave solutions are found for a general class of filters and are shown to converge to weak solutions of inviscid Burgers equation with the correct wave speed. Accurate numerical simulations are conducted in 1D and 2D cases where the shock behavior, shock thickness, and kinetic energy decay are examined. Energy spectrum are also examined and are shown to be related to the smoothness of the solutions

    On the motion of spinning test particles in plane gravitational waves

    Full text link
    The Mathisson-Papapetrou-Dixon equations for a massive spinning test particle in plane gravitational waves are analysed and explicit solutions constructed in terms of solutions of certain linear ordinary differential equations. For harmonic waves this system reduces to a single equation of Mathieu-Hill type. In this case spinning particles may exhibit parametric excitation by gravitational fields. For a spinning test particle scattered by a gravitational wave pulse, the final energy-momentum of the particle may be related to the width, height, polarisation of the wave and spin orientation of the particle.Comment: 11 page

    Van der Waals epitaxy growth of 2D ferromagnetic Cr<sub>(1+δ)</sub>Te<sub>2</sub> nanolayers with concentration-tunable magnetic anisotropy

    Get PDF
    Cr(1+δ)Te2 are pseudo-layered compounds consisting of CrTe2 transition metal dichalcogenide (TMD) layers with additional (δ) self-intercalated Cr atoms. The recent search for ferromagnetic 2D materials revived the interest into chromium tellurides. Here, Cr(1+δ)Te2 nanolayers are epitaxially grown on MoS2 (0001), forming prototypical van der Waals heterostructures. Under optimized growth conditions, ultrathin films of only two TMD layers with a single intercalated Cr-layer are achieved, forming a 2D sheet with van der Waals surfaces. Detailed compositional and structural characterization by scanning tunneling microscopy, grazing incidence x-ray diffraction, and high-resolution Rutherford backscattering indicate the layer-by-layer growth and that the δ can be tuned by post-growth annealing in a range between ∼0.5 and 1. X-ray magnetic circular dichroism and magnetometry measurements demonstrate that all self-intercalated Cr(1+δ)Te2 nanolayers exhibit strong ferromagnetism with magnetic moments larger than 3μB per Cr-atom. The magnetic properties are maintained in the ultrathin limit of a material with a single intercalation layer. Interestingly, the magnetic anisotropy can be tuned from close to isotropic (δ = 1) to a desirable perpendicular anisotropy for low δ values. Thus, the bottom-up growth of these 2D Cr(1+δ)Te2 sheets is a promising approach for designing magnetic van der Waals heterostructures

    Scattering of Spinning Test Particles by Plane Gravitational and Electromagnetic Waves

    Get PDF
    The Mathisson-Papapetrou-Dixon (MPD) equations for the motion of electrically neutral massive spinning particles are analysed, in the pole-dipole approximation, in an Einstein-Maxwell plane-wave background spacetime. By exploiting the high symmetry of such spacetimes these equations are reduced to a system of tractable ordinary differential equations. Classes of exact solutions are given, corresponding to particular initial conditions for the directions of the particle spin relative to the direction of the propagating background fields. For Einstein-Maxwell pulses a scattering cross section is defined that reduces in certain limits to those associated with the scattering of scalar and Dirac particles based on classical and quantum field theoretic techniques. The relative simplicity of the MPD approach and its use of macroscopic spin distributions suggests that it may have advantages in those astrophysical situations that involve strong classical gravitational and electromagnetic environments.Comment: Submitted to Classical and Quantum Gravity. 12 page

    Structure and magnetism of EuS on Bi<sub>2</sub>Se<sub>3</sub>(0001)

    Get PDF
    The rocksalt-type ferromagnetic (FM) insulator EuS (bulk TC = 17 K) grown on Bi2Se3 with well-matched (111) plane of the film and (0001) plane of the substrate is studied. The system may feature magnetic proximity effect breaking the time-reversal symmetry and opening a bandgap in the metallic topologically protected surface state of Bi2Se3. The experimental X-ray diffraction studies are combined with ab initio calculations to resolve contradictory results concerning the enhancement of the TC up to 300 K and the degree of induced magnetization in the system. It is concluded that previous studies relied on idealized and unconfirmed structure models. Herein, it is shown by surface X-ray diffraction (SXRD) with ab initio calculations that a two double layer-thick EuS film grows with a sharp interface and without chemical intermixing in a single domain state in an FCC-type stacking on the Bi2Se3(0001) surface in which the topmost layer is metallic, thereby lifting polarity. A large pz-orbital-derived top-layer sulfur magnetic moment of 0.6 μB is found, whereas for europium, μEu = 6.9 μB throughout the film is found. No magnetization within the first Bi2Se3 quintuple layer is found. The calculation of the exchange parameters Jij indicates a complex FM and antiferromagnetic ordering between europium and sulfur with a maximum Néel temperature of 226 K

    Experimental application of decoherence-free subspaces in a quantum-computing algorithm

    Get PDF
    For a practical quantum computer to operate, it will be essential to properly manage decoherence. One important technique for doing this is the use of "decoherence-free subspaces" (DFSs), which have recently been demonstrated. Here we present the first use of DFSs to improve the performance of a quantum algorithm. An optical implementation of the Deutsch-Jozsa algorithm can be made insensitive to a particular class of phase noise by encoding information in the appropriate subspaces; we observe a reduction of the error rate from 35% to essentially its pre-noise value of 8%.Comment: 11 pages, 4 figures, submitted to PR
    • …
    corecore