27,323 research outputs found
A new species of micro-mangrove crab of the genus Haberma Ng & Schubart, 2002 (Crustacea, Brachyura, Sesarmidae) from Hong Kong
The sesarmid genus Haberma Ng & Schubart, 2002, currently contains two species of small mangrove crabs with the first two pairs of the male ambulatory legs possessing characteristic subchelate dactyli and propodi. A new species, H. tingkok, is here described from Hong Kong. It can be separated from H. nanum Ng & Schubart, 2002 (from Singapore), and H. kamora Rahayu & Ng, 2005 (from Indonesian Papua) by its carapace shape, proportions of the ambulatory legs, and structures of the male pleon and male first gonopod.published_or_final_versio
Integrative model of behavioural intention: the influence of environmental concern and condition factors on food waste separation
Purpose
This paper positions environmental concern as the antecedent of attitude, subjective norm and perceived behavioural control. It also sets to expand the theory of planned behaviour by including two condition factors: favourable situation and facility availability on the intention to separate food waste at source.
Design/methodology/approach
The study collects data by using self-administered questionnaires on 682 respondents in Malaysia. Structural equation modelling is employed to test the conceptual model and the proposed hypotheses.
Findings
The results show that environmental concern positively influences attitude and subjective norms, which, in turn, influences food waste separation intention. Favourable situation and facility availability are found to influence the separation intention.
Originality/value
This study is one of the earliest studies to investigate residents’ intention to participate in food waste separation at a source that employs the expanded theory of planned behaviour with environmental concern and condition factors
High-Energy emissions from the Pulsar/Be binary system PSR J2032+4127/MT91 213
PSR J2032+4127 is a radio-loud gamma-ray-emitting pulsar; it is orbiting
around a high-mass Be type star with a very long orbital period of 25-50years,
and is approaching periastron, which will occur in late 2017/early 2018. This
system comprises with a young pulsar and a Be type star, which is similar to
the so-called gamma-ray binary PSR~B1259-63/LS2883. It is expected therefore
that PSR J2032+4127 shows an enhancement of high-energy emission caused by the
interaction between the pulsar wind and Be wind/disk around periastron. Ho et
al. recently reported a rapid increase in the X-ray flux from this system. In
this paper, we also confirm a rapid increase in the X-ray flux along the orbit,
while the GeV flux shows no significant change. We discuss the high-energy
emissions from the shock caused by the pulsar wind and stellar wind interaction
and examine the properties of the pulsar wind in this binary system. We argue
that the rate of increase of the X-ray flux observed by Swift indicates (1) a
variation of the momentum ratio of the two-wind interaction region along the
orbit, or (2) an evolution of the magnetization parameter of the pulsar wind
with the radial distance from the pulsar. We also discuss the pulsar wind/Be
disk interaction at the periastron passage, and propose the possibility of
formation of an accretion disk around the pulsar. We model high-energy
emissions through the inverse-Compton scattering process of the
cold-relativistic pulsar wind off soft photons from the accretion disk.Comment: 18 pages, 23 figures, 1 Table, accepted for publication in Ap
The X-ray modulation of PSR J2032+4127/MT91 213 during the Periastron Passage in 2017
We present the Neil Gehrels Swift Observatory (Swift), Fermi Large Area
Telescope (Fermi-LAT), and Karl G. Jansky Very Large Array (VLA) observations
of the gamma-ray binary PSR J2032+4127/MT91 213, of which the periastron
passage has just occurred in November 2017. In the Swift X-ray light curve, the
flux was steadily increasing before mid-October 2017, however, a sharp X-ray
dip on a weekly time-scale is seen during the periastron passage, followed by a
post-periastron X-ray flare lasting for ~20 days. We suggest that the X-ray dip
is caused by (i) an increase of the magnetization parameter at the shock, and
(ii) the suppression due to the Doppler boosting effect. The 20-day
post-periastron flare could be a consequence of the Be stellar disk passage by
the pulsar. An orbital GeV modulation is also expected in our model, however,
no significant variability is seen in the Fermi-LAT light curve. We suspect
that the GeV emission resulted from the interaction between the binary's
members is hidden behind the bright magnetospheric emission of the pulsar.
Pulsar gating technique would be useful to remove the magnetospheric emission
and recover the predicted GeV modulation, if an accurate radio timing solution
over the periastron passage is provided in the future.Comment: 6 pages, including 2 figures. Accepted for publication in Ap
Deep Chandra Observation of the Pulsar Wind Nebula Powered by the Pulsar J1846-0258 in the Supernova Remnant Kes 75
We present the results of detailed spatial and spectral analysis of the
pulsar wind nebula (PWN) in supernova remnant Kes 75 (G29.7-0.3) using a deep
exposure with Chandra X-ray observatory. The PWN shows a complex morphology
with clear axisymmetric structure. We identified a one-sided jet and two bright
clumps aligned with the overall nebular elongation, and an arc-like feature
perpendicular to the jet direction. Further spatial modeling with a torus and
jet model indicates a position angle 207\arcdeg\pm8 \arcdeg for the PWN
symmetry axis. We interpret the arc as an equatorial torus or wisp and the
clumps could be shock interaction between the jets and the surrounding medium.
The lack of any observable counter jet implies a flow velocity larger than
0.4c. Comparing to an archival observation 6 years earlier, some small-scale
features in the PWN demonstrate strong variability: the flux of the inner jet
doubles and the peak of the northern clump broadens and shifts 2" outward. In
addition, the pulsar flux increases by 6 times, showing substantial spectral
softening from =1.1 to 1.9 and an emerging thermal component which was
not observed in the first epoch. The changes in the pulsar spectrum are likely
related to the magnetar-like bursts of the pulsar that occurred 7 days before
the Chandra observation, as recently reported from RXTE observations.Comment: Accepted by ApJ, 8 figures, some of them have been scaled down in
resolutio
Spin-Orbit Coupling and Symmetry of the Order Parameter in Strontium Ruthenate
Determination of the orbital symmetry of a state in spin triplet
SrRuO superconductor is a challenge of considerable importance. Most of
the experiments show that the chiral state of the type
is realized and remains stable on lowering the temperature. Here we have
studied the stability of various superconducting states of SrRuO in the
presence of spin-orbit coupling.
Numerically we found that the chiral state is never the minimum energy. Alone
among the five states studied it has and is
therefore not affected to linear order in the coupling parameter . We
found that stability of the chiral state requires spin dependent pairing
interactions. This imposes strong constraint on the pairing mechanism.Comment: 4 pages, 4 figure
Crack analysis of concrete beams based on pseudo-discrete crack model
Crack widths are important considerations in both serviceability and durability design of concrete structures and should be evaluated to ensure compliance with design limits. However, existing empirical formulas for maximum crack width prediction are discrepant with each other, and they cannot reveal key information such as crack number and crack spacing. To obtain such information, finite element analysis has to be adopted. However, conventional finite element analysis has its limits in carrying out crack analysis. Particularly, the common smeared crack models, which do not realistically reflect bond-slip of reinforcing bars, would not give correct crack widths. In contrast, the discrete crack models are difficult to apply because of the need to adaptively generate discrete crack elements according to the cracks formed during the loading process. In this paper, a pseudo-discrete crack model is developed for finite element implementation. The conventional smeared crack model is transformed and reformulated, and a novel crack queuing algorithm is introduced for crack analysis. The method has been applied to analyse concrete beams in the literature. It is demonstrated that the computational results of crack number, spacing and widths agree closely with the measured results
Generalized q-Oscillators and their Hopf Structures
We study the relationships among the various forms of the oscillator
algebra and consider the conditions under which it supports a Hopf structure.
We also present a generalization of this algebra together with its
corresponding Hopf structure. Its multimode extensions are also considered.Comment: 14 page
Test Results on the Silicon Pixel Detector for the TTF-FEL Beam Trajectory Monitor
Test measurements on the silicon pixel detector for the beam trajectory
monitor at the free electron laser of the TESLA test facility are presented. To
determine the electronic noise of detector and read-out and to calibrate the
signal amplitude of different pixels the 6 keV photons of the manganese K line
are used. Two different methods determine the spatial accuracy of the detector:
In one setup a laser beam is focused to a straight line and moved across the
pixel structure. In the other the detector is scanned using a low-intensity
electron beam of an electron microscope. Both methods show that the symmetry
axis of the detector defines a straight line within 0.4 microns. The
sensitivity of the detector to low energy X-rays is measured using a vacuum
ultraviolet beam at the synchrotron light source HASYLAB. Additionally, the
electron microscope is used to study the radiation hardness of the detector.Comment: 14 pages (Latex), 13 figures (Postscript), submitted to Nuclear
Instruments and Methods
Observing two dark accelerators around the Galactic Centre with Fermi Large Area Telescope
We report the results from a detailed ray investigation in the field
of two "dark accelerators", HESS J1745-303 and HESS J1741-302, with years
of data obtained by the Fermi Large Area Telescope. For HESS J1745-303, we
found that its MeV-GeV emission is mainly originated from the "Region A" of the
TeV feature. Its ray spectrum can be modeled with a single power-law
with a photon index of from few hundreds MeV to TeV. Moreover,
an elongated feature, which extends from "Region A" toward northwest for
, is discovered for the first time. The orientation of this
feature is similar to that of a large scale atomic/molecular gas distribution.
For HESS J1741-302, our analysis does not yield any MeV-GeV counterpart for
this unidentified TeV source. On the other hand, we have detected a new point
source, Fermi J1740.1-3013, serendipitously. Its spectrum is apparently curved
which resembles that of a ray pulsar. This makes it possibly
associated with PSR B1737-20 or PSR J1739-3023.Comment: 11 pages, 7 figures, 2 tables, accepted for publication in MNRA
- …