3,302 research outputs found

    Magnetoroton scattering by phonons in the fractional quantum Hall regime

    Full text link
    Motivated by recent phonon spectroscopy experiments in the fractional quantum Hall regime we consider processes in which thermally excited magnetoroton excitations are scattered by low energy phonons. We show that such scattering processes can never give rise to dissociation of magnetorotons into unbound charged quasiparticles as had been proposed previously. In addition we show that scattering of magnetorotons to longer wavelengths by phonon absorption is possible because of the shape of the magnetoroton dispersion curve and it is shown that there is a characteristic cross-over temperature above which the rate of energy transfer to the electron gas changes from an exponential (activated) to a power law dependence on the effective phonon temperature.Comment: LaTex document, 3 eps figures. submitted to Phys Rev

    Validating Spray Coverage Rate Using Liquid Mass on a Spray Card

    Get PDF
    Validation of agricultural sprayers is important for quantifying as-applied coverage rates under field conditions. The complexity of modern sprayer control systems presents a challenge for precise field validation due to the use of nozzle control technologies, such as pulse width modulation, to meter chemical flow rates at individual nozzles. Non-uniform flow over time may result in local variations at high spatial resolutions that are ignored when estimating as-applied coverage rates across a field. The purpose of this study was to test several methods for estimating the mass of water applied to a water-sensitive paper spray card target using steady-state and instantaneous measurement techniques. The steady-state method consisted of a spray patternator table used to quantify the mass flow rate distribution across the nozzle width at varying nozzle pressures. The mass flow rate was then projected onto a two-dimensional area traveling across the spray width to calculate the mass of water that was deposited in the area. Two instantaneous sampling methods were used. The first method directly measured the mass of the spray card and water for 5 min after exposure to model the evaporation rate and solve for the initial mass at the time of exposure. The second method indirectly used the percent coverage of the exposed spray card by droplets. Results showed that the error between the calculated mass of water from the mass flow rate and the estimated initial mass of water from the evaporation rate varied between 2% and 8%. The relationships between the calculated and estimated initial mass of water methods and the spray card percent coverage were highly linear (R2 \u3e 0.98). Both instantaneous methods produced results with higher variability between replications than the steady-state method, but the number of replications resulted in acceptably small differences between average mass measurements. These results show the potential for using evaporation rates for laboratory validation and percent coverage for laboratory or field validation of as-applied coverage rates

    Disentangling the exchange coupling of entangled donors in the Si quantum computer architecture

    Full text link
    We develop a theory for micro-Raman scattering by single and coupled two-donor states in silicon. We find the Raman spectra to have significant dependence on the donor exchange splitting and the relative spatial positions of the two donor sites. In particular, we establish a strong correlation between the temperature dependence of the Raman peak intensity and the interdonor exchange coupling. Micro-Raman scattering can therefore potentially become a powerful tool to measure interqubit coupling in the development of a Si quantum computer architecture.Comment: Title changed. Other minor change

    Probing the quantum phase transition in the Dicke model through mechanical vibrations

    Full text link
    This paper is concerned with quantum dynamics of a system coupled to a critical reservoir. In this context, we employ the Dicke model which is known to exhibit a super radiant quantum phase transition (QPT) and we allow one of the mirrors to move under a linear restoring force. The electromagnetic field couples to the movable mirror though radiation pressure just like in typical optomechanical setups. We show that, in the thermodynamical limit, the super-radiant phase induces a classical driving force on the mirror without causing decoherence.Comment: 6 pages, 3 figures, final versio

    DRUG-NEM: Optimizing drug combinations using single-cell perturbation response to account for intratumoral heterogeneity.

    Get PDF
    An individual malignant tumor is composed of a heterogeneous collection of single cells with distinct molecular and phenotypic features, a phenomenon termed intratumoral heterogeneity. Intratumoral heterogeneity poses challenges for cancer treatment, motivating the need for combination therapies. Single-cell technologies are now available to guide effective drug combinations by accounting for intratumoral heterogeneity through the analysis of the signaling perturbations of an individual tumor sample screened by a drug panel. In particular, Mass Cytometry Time-of-Flight (CyTOF) is a high-throughput single-cell technology that enables the simultaneous measurements of multiple ([Formula: see text]40) intracellular and surface markers at the level of single cells for hundreds of thousands of cells in a sample. We developed a computational framework, entitled Drug Nested Effects Models (DRUG-NEM), to analyze CyTOF single-drug perturbation data for the purpose of individualizing drug combinations. DRUG-NEM optimizes drug combinations by choosing the minimum number of drugs that produce the maximal desired intracellular effects based on nested effects modeling. We demonstrate the performance of DRUG-NEM using single-cell drug perturbation data from tumor cell lines and primary leukemia samples

    Time evolution in the Morse potential using supersymmetry: dissociation of the NO molecule

    Get PDF
    We present an algebraic method for treating molecular vibrations in the Morse potential perturbed by an external laser field. By the help of a complete and normalizable basis we transform the Schr\"{o}dinger equation into a system of coupled ordinary differential equations. We apply our method to calculate the dissociation probability of the NO molecule excited by chirped laser pulses. The dependence of the molecular dipole-moment on the interatomic separation is determined by a quantum-chemical method, and the corresponding transition dipole moments are given by approximate analytic expressions. These turn out to be very small between neighboring stationary states around the vibrational quantum number m=42m=42, therefore we propose to use additional pulses in order to skip this trapping state, and to obtain a reasonable dissociation probability.Comment: 4 pages, 3 figure

    Magnetic-field-induced singularities in spin dependent tunneling through InAs quantum dots

    Get PDF
    Current steps attributed to resonant tunneling through individual InAs quantum dots embedded in a GaAs-AlAs-GaAs tunneling device are investigated experimentally in magnetic fields up to 28 T. The steps evolve into strongly enhanced current peaks in high fields. This can be understood as a field-induced Fermi-edge singularity due to the Coulomb interaction between the tunneling electron on the quantum dot and the partly spin polarized Fermi sea in the Landau quantized three-dimensional emitter.Comment: 5 pages, 4 figure

    Localized states in strong magnetic field: resonant scattering and the Dicke effect

    Full text link
    We study the energy spectrum of a system of localized states coupled to a 2D electron gas in strong magnetic field. If the energy levels of localized states are close to the electron energy in the plane, the system exhibits a kind of collective behavior analogous to the Dicke effect in optics. The latter manifests itself in ``trapping'' of electronic states by localized states. At the same time, the electronic density of states develops a gap near the resonance. The gap and the trapping of states appear to be complementary and reflect an intimate relation between the resonant scattering and the Dicke effect. We reveal this relation by presenting the exact solution of the problem for the lowest Landau level. In particular, we show that in the absence of disorder the system undergoes a phase transition at some critical concentration of localized states.Comment: 28 pages + 9 fig

    Resonant scattering in a strong magnetic field: exact density of states

    Full text link
    We study the structure of 2D electronic states in a strong magnetic field in the presence of a large number of resonant scatterers. For an electron in the lowest Landau level, we derive the exact density of states by mapping the problem onto a zero-dimensional field-theoretical model. We demonstrate that the interplay between resonant and non-resonant scattering leads to a non-analytic energy dependence of the electron Green function. In particular, for strong resonant scattering the density of states develops a gap in a finite energy interval. The shape of the Landau level is shown to be very sensitive to the distribution of resonant scatterers.Comment: 12 pages + 3 fig
    • …
    corecore