2,485 research outputs found

    Determining the Electron-Phonon Coupling Strength in Correlated Electron Systems from Resonant Inelastic X-ray Scattering

    Full text link
    We show that high resolution Resonant Inelastic X-ray Scattering (RIXS) provides direct, element-specific and momentum-resolved information on the electron-phonon (e-p) coupling strength. Our theoretical analysis demonstrates that the e-p coupling can be extracted from RIXS spectra by determining the differential phonon scattering cross section. An alternative, very direct manner to extract the coupling is to use the one and two-phonon loss ratio, which is governed by the e-p coupling strength and the core-hole life-time. This allows measurement of the e-p coupling on an absolute energy scale.Comment: 4 pages, 3 figure

    Ultrashort Lifetime Expansion for Indirect Resonant Inelastic X-ray Scattering

    Get PDF
    In indirect resonant inelastic X-ray scattering (RIXS) an intermediate state is created with a core-hole that has a ultrashort lifetime. The core-hole potential therefore acts as a femtosecond pulse on the valence electrons. We show that this fact can be exploited to integrate out the intermediate states from the expressions for the scattering cross section. By this we obtain an effective scattering cross section that only contains the initial and final scattering states. We derive in detail the effective cross section which turns out to be a resonant scattering factor times a linear combination of the charge response function S(q,ω)S({\bf q},\omega) and the dynamic longitudinal spin density correlation function. This result is asymptotically exact for both strong and weak local core-hole potentials and ultrashort lifetimes. The resonant scattering pre-factor is shown to be weakly temperature dependent. We also derive a sum-rule for the total scattering intensity and generalize the results to multi-band systems. One of the remarkable outcomes is that one can change the relative charge and spin contribution to the inelastic spectral weight by varying the incident photon energy.Comment: 9 pages, 3 figures embedde

    Theory for Magnetism and Triplet Superconductivity in LiFeAs

    Full text link
    Superconducting pnictides are widely found to feature spin-singlet pairing in the vicinity of an antiferromagnetic phase, for which nesting between electron and hole Fermi surfaces is crucial. LiFeAs differs from the other pnictides by (i) poor nesting properties and (ii) unusually shallow hole pockets. Investigating magnetic and pairing instabilities in an electronic model that incorporates these differences, we find antiferromagnetic order to be absent. Instead we observe almost ferromagnetic fluctuations which drive an instability toward spin-triplet p-wave superconductivity.Comment: Published versio

    First-principles study of the interaction and charge transfer between graphene and metals

    Get PDF
    Measuring the transport of electrons through a graphene sheet necessarily involves contacting it with metal electrodes. We study the adsorption of graphene on metal substrates using first-principles calculations at the level of density functional theory. The bonding of graphene to Al, Ag, Cu, Au and Pt(111) surfaces is so weak that its unique "ultrarelativistic" electronic structure is preserved. The interaction does, however, lead to a charge transfer that shifts the Fermi level by up to 0.5 eV with respect to the conical points. The crossover from p-type to n-type doping occurs for a metal with a work function ~5.4 eV, a value much larger than the work function of free-standing graphene, 4.5 eV. We develop a simple analytical model that describes the Fermi level shift in graphene in terms of the metal substrate work function. Graphene interacts with and binds more strongly to Co, Ni, Pd and Ti. This chemisorption involves hybridization between graphene pzp_z-states and metal d-states that opens a band gap in graphene. The graphene work function is as a result reduced considerably. In a current-in-plane device geometry this should lead to n-type doping of graphene.Comment: 12 pages, 9 figure

    Resonant Inelastic X-ray Scattering on Spin-Orbit Coupled Insulating Iridates

    Full text link
    We determine how the elementary excitations of iridium-oxide materials, which are dominated by a strong relativistic spin-orbit coupling, appear in Resonant Inelastic X-ray Scattering (RIXS). Whereas the RIXS spectral weight at the L2 x-ray edge vanishes, we find it to be strong at the L3-edge. Applying this to Sr2IrO4, we observe that RIXS, besides being sensitive to local doublet to quartet transitions, meticulously maps out the strongly dispersive delocalized excitations of the low-lying spin-orbit doublets.Comment: 4 pages, 3 figure

    New light on magnetic excitations: indirect resonant inelastic X-ray scattering on magnons

    Full text link
    Recent experiments show that indirect resonant inelastic X-ray scattering (RIXS) is a new probe of spin dynamics. Here I derive the cross-section for magnetic RIXS and determine the momentum dependent four-spin correlation function that it measures. These results show that this technique offers information on spin dynamics that is complementary to e.g. neutron scattering. The RIXS spectrum of Heisenberg antiferromagnets is calculated. It turns out that only scattering processes that involve at least two magnons are allowed. Other selection rules imply that the scattering intensity vanishes for specific transferred momenta q{\bf q}, in particular for q=0{\bf q}=0. The calculated spectra agree very well with the experimental data.Comment: 4 pages, 3 figure

    Resonant Inelastic X-ray Scattering Studies of Elementary Excitations

    Full text link
    In the past decade, Resonant Inelastic X-ray Scattering (RIXS) has made remarkable progress as a spectroscopic technique. This is a direct result of the availability of high-brilliance synchrotron X-ray radiation sources and of advanced photon detection instrumentation. The technique's unique capability to probe elementary excitations in complex materials by measuring their energy-, momentum-, and polarization-dependence has brought RIXS to the forefront of experimental photon science. We review both the experimental and theoretical RIXS investigations of the past decade, focusing on those determining the low-energy charge, spin, orbital and lattice excitations of solids. We present the fundamentals of RIXS as an experimental method and then review the theoretical state of affairs, its recent developments and discuss the different (approximate) methods to compute the dynamical RIXS response. The last decade's body of experimental RIXS data and its interpretation is surveyed, with an emphasis on RIXS studies of correlated electron systems, especially transition metal compounds. Finally, we discuss the promise that RIXS holds for the near future, particularly in view of the advent of x-ray laser photon sources.Comment: Review, 67 pages, 44 figure

    Finite temperature spin-dynamics and phase transitions in spin-orbital models

    Full text link
    We study finite temperature properties of a generic spin-orbital model relevant to transition metal compounds, having coupled quantum Heisenberg-spin and Ising-orbital degrees of freedom. The model system undergoes a phase transition, consistent with that of a 2D Ising model, to an orbitally ordered state at a temperature set by short-range magnetic order. At low temperatures the orbital degrees of freedom freeze-out and the model maps on to a quantum Heisenberg model. The onset of orbital excitations causes a rapid scrambling of the spin spectral weight away from coherent spin-waves, which leads to a sharp increase in uniform magnetic susceptibility just below the phase transition, reminiscent of the observed behavior in the Fe-pnictide materials.Comment: 4 page

    Orbital excitations in LaMnO3_3

    Get PDF
    We study the recently observed orbital excitations, orbitons, and treat electron-electron correlations and lattice dynamics on equal footing. It is shown that the orbiton energy and dispersion are determined by both correlations and lattice-vibrations. The electron-phonon coupling causes satellite structures in the orbiton spectral function and the elementary excitations of the system are mixed modes with both orbital and phonon character. It is proposed that the satellite structures observed in recent Raman-scattering experiments on LaMnO3_3 are actually orbiton derived satellites in the phonon spectral function, caused by the phonon-orbiton interaction.Comment: 4 pages, 3 figures embedde
    • …
    corecore