4,681 research outputs found

    Medium and large-scale variations of dynamo-induced electric fields from AE ion drift measurements

    Get PDF
    Current models of the low latitude electric field are largely based on data from incoherent scatter radars. These observations are extended through the addition of the rather extensive high quality electric field measurements from the Ion Drift Meter (IDM) aboard the Atmosphere Explorer (AE) spacecraft. Some preliminary results obtained from the Unified Abstract files of satellite AE-E are presented. This satellite was active from the end of 1975 through June 1981 in various elliptical and circular orbits having an inclination near 20 deg. The resulting data can be examined for the variation of ion drift with latitude, longitude, season, solar cycle, altitude, and magnetic activity. The results presented deal primarily with latitudinal variations of the drift features. Diagrams of data are given and briefly interpreted. The preliminary results presented here indicate that IDM data from the AE and the more recent Dynamics Explorer B spacecraft should continue to disclose some interesting and previously unobserved dynamical features of the low latitude F region

    Description and catalog of ionospheric F-region data, Jicamarca Radar Observatory, November 1966 - April 1969

    Get PDF
    Equatorial ionospheric F-region data reduced from the Jicamarca Radar Observatory (JRO) incoherent scatter observations for particular periods is described. It lists in catalog form the times of the observations made during those periods. These F-region data include the electron concentration and the electron and ion temperatures. The data were inferred from the incoherent scatter observations of JRO

    On a conjecture regarding the upper graph box dimension of bounded subsets of the real line

    Full text link
    Let X \subset R be a bounded set; we introduce a formula that calculates the upper graph box dimension of X (i.e.the supremum of the upper box dimension of the graph over all uniformly continuous functions defined on X). We demonstrate the strength of the formula by calculating the upper graph box dimension for some sets and by giving an "one line" proof, alternative to the one given in [1], of the fact that if X has finitely many isolated points then its upper graph box dimension is equal to the upper box dimension plus one. Furthermore we construct a collection of sets X with infinitely many isolated points, having upper box dimension a taking values from zero to one while their graph box dimension takes any value in [max{2a,1},a + 1], answering this way, negatively to a conjecture posed in [1]

    Fitting Together the HI Absorption and Emission in the SGPS

    Get PDF
    In this paper we study 21-cm absorption spectra and the corresponding emission spectra toward bright continuum sources in the test region (326deg< l < 333 deg) of the Southern Galactic Plane Survey. This survey combines the high resolution of the Australia Telescope Compact Array with the full brightness temperature information of the Parkes single dish telescope. In particular, we focus on the abundance and temperature of the cool atomic clouds in the inner galaxy. The resulting mean opacity of the HI, , is measured as a function of Galactic radius; it increases going in from the solar circle, to a peak in the molecular ring of about four times its local value. This suggests that the cool phase is more abundant there, and colder, than it is locally. The distribution of cool phase temperatures is derived in three different ways. The naive, ``spin temperature'' technique overestimates the cloud temperatures, as expected. Using two alternative approaches we get good agreement on a histogram of the cloud temperatures, T(cool), corrected for blending with warm phase gas. The median temperature is about 65 K, but there is a long tail reaching down to temperatures below 20 K. Clouds with temperatures below 40 K are common, though not as common as warmer clouds (40 to 100 K). Using these results we discuss two related quantities, the peak brightness temperature seen in emission surveys, and the incidence of clouds seen in HI self-absorption. Both phenomena match what would be expected based on our measurements of and T(cool).Comment: 50 pages, 20 figure

    GSH23.0-0.7+117, a neutral hydrogen shell in the inner Galaxy

    Full text link
    GSH23.0-0.7+117 is a well-defined neutral hydrogen shell discovered in the VLA Galactic Plane Survey (VGPS). Only the blueshifted side of the shell was detected. The expansion velocity and systemic velocity were determined through the systematic behavior of the HI emission with velocity. The center of the shell is at (l,b,v)=(23.05,-0.77,+117 km/s). The angular radius of the shell is 6.8', or 15 pc at a distance of 7.8 kpc. The HI mass divided by the volume of the half-shell implies an average density n_H = 11 +/- 4 cm^{-3} for the medium in which the shell expanded. The estimated age of GSH23.0-0.7+117 is 1 Myr, with an upper limit of 2 Myr. The modest expansion energy of 2 * 10^{48} erg can be provided by the stellar wind of a single O4 to O8 star over the age of the shell. The 3 sigma upper limit to the 1.4 GHz continuum flux density (S_{1.4} < 248 mJy) is used to derive an upper limit to the Lyman continuum luminosity generated inside the shell. This upper limit implies a maximum of one O9 star (O8 to O9.5 taking into account the error in the distance) inside the HI shell, unless most of the incident ionizing flux leaks through the HI shell. To allow this, the shell should be fragmented on scales smaller than the beam (2.3 pc). If the stellar wind bubble is not adiabatic, or the bubble has burst (as suggested by the HI channel maps), agreement between the energy and ionization requirements is even less likely. The limit set by the non-detection in the continuum provides a significant challenge for the interpretation of GSH23.0-0.7+117 as a stellar wind bubble. A similar analysis may be applicable to other Galactic HI shells that have not been detected in the continuum.Comment: 18 pages, 6 figures. Figures 1 and 4 separately in GIF format. Accepted for publication in Astrophysical Journa

    Equivariant Localization

    Full text link

    Constraints on the distance to SGR 1806-20 from HI absorption

    Full text link
    The giant flare detected from the magnetar SGR 1806-20 on 2004 December 27 had a fluence more than 100 times higher than the only two other SGR flares ever recorded. Whereas the fluence is independent of distance, an estimate for the luminosity of the burst depends on the source's distance, which has previously been argued to be ~15 kpc. The burst produced a bright radio afterglow, against which Cameron et al. (2005) have measured an HI absorption spectrum. This has been used to propose a revised distance to SGR 1806-20 of between 6.4 and 9.8 kpc. Here we analyze this absorption spectrum, and compare it both to HI emission data from the Southern Galactic Plane Survey and to archival 12-CO survey data. We confirm ~6 kpc, as a likely lower limit on the distance to SGR 1806-20, but argue that it is difficult to place an upper limit on the distance to SGR 1806-20 from the HI data currently available. The previous value of ~15 kpc thus remains the best estimate of the distance to the source.Comment: 3 pages, 1 embedded EPS figure. Added sentences to end of Abstract and Conclusion, clarifying that most likely distance is 15 kpc. ApJ Letters, in pres

    The VLA Galactic Plane Survey

    Get PDF
    The VLA Galactic Plane Survey (VGPS) is a survey of HI and 21-cm continuum emission in the Galactic plane between longitude 18 degrees 67 degr. with latitude coverage from |b| < 1.3 degr. to |b| < 2.3 degr. The survey area was observed with the Very Large Array (VLA) in 990 pointings. Short-spacing information for the HI line emission was obtained by additional observations with the Green Bank Telescope (GBT). HI spectral line images are presented with a resolution of 1 arcmin x 1 arcmin x 1.56 km/s (FWHM) and rms noise of 2 K per 0.824 km/s channel. Continuum images made from channels without HI line emission have 1 arcmin (FWHM) resolution. VGPS images are compared with images from the Canadian Galactic Plane Survey (CGPS) and the Southern Galactic Plane Survey (SGPS). In general, the agreement between these surveys is impressive, considering the differences in instrumentation and image processing techniques used for each survey. The differences between VGPS and CGPS images are small, < 6 K (rms) in channels where the mean HI brightness temperature in the field exceeds 80 K. A similar degree of consistency is found between the VGPS and SGPS. The agreement we find between arcminute resolution surveys of the Galactic plane is a crucial step towards combining these surveys into a single uniform dataset which covers 90% of the Galactic disk: the International Galactic Plane Survey (IGPS). The VGPS data will be made available on the World Wide Web through the Canadian Astronomy Data Centre (CADC).Comment: Accepted for publication in The Astronomical Journal. 41 pages, 13 figures. For information on data release, colour images etc. see http://www.ras.ucalgary.ca/VGP
    • 

    corecore